FIFTH SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, NOVEMBER 2016

(UG-CCSS)

Mathematics
MM 5B 07—BASIC MATHEMATICAL ANALYSIS
Time : Three Hours
Maximum : 30 Weightage
I. Objective type questions. Answer all twelve questions:

1 Let $f(x)=\frac{2 x}{}$, for all $x \in A=\{x \in R: x \neq 1\}$, then range of f is
2 Using algebraic properties of R , prove that $a+b=0 \Rightarrow b=-a$.
3 Find the supremum of $S=\left\{\frac{(-1)^{n}}{n}: n E N\right.$.
4 State nested intervals property.
5 Give an example of a convergent sequence of positive numbers with $\lim x_{t}{ }^{n}=1$.

6 Show that $\{2\}$ cannot converge.
7 Define a Cauchy sequence.
8 State True or False :
"If $\left\{x_{n}\right\}$ converges to 1 , then every subsequence of $\left\{x_{n}\right\}$ also converges to 1 ".
9 Give an example of an open set in R.
10 State True or False :
"Arbitrary union of closed sets in R is closed".
11 Prove that $\operatorname{Im}(i z)=\operatorname{Re} z$, 'where z is a complex number.
12 Prove that $1+2$'s is closer to the origin then $3+4 i$.
II. Very short answer questions. Answer all nine questions :

13 Suppose S and T are sets such that T c S then prove that If S is finite then T is finite.
14 Given $\mathrm{f}=\mathrm{x}^{2}+1$ and $g \quad$ find $f o g$ and g
15 If x and y are reals with $\mathrm{x}<\mathrm{y}$, then prove that if an irrational number of such that $x<z<y$.
16 Give examples to show that supremum and infimum may not belong to the set.
17 Find the supremum and Infimum of the set S where $S=\left\{x: 3 x^{2}-10 x+3<0\right\}$.

18 Using the definition of limit, show that $\lim \binom{3 x+0}{x+1}=$
19 If $\mathrm{X}=\left(x_{n}\right)$ is a convergent sequence of reals and if $x_{n} 0$ for all n , then prove that:

$$
x=\lim \left(x_{n}\right) \geq 0 .
$$

20 Establish the proper divergence of (\sqrt{n}).

21 Find the least positive integer (non-zero) in such that $\left(\frac{1+i)}{1-i}=1\right.$,

$$
\text { (} 9 \times 1=9 \text { weightage) }
$$

III. Short answer questions. Answer any five questions :

22 Prove that there does not exist a rational number r such that $r^{2}=2$.
23 If $a, b E R$, prove that :

$$
\left.1 \quad b I\right|^{\prime}=\left\lvert\, \begin{array}{ll}
a & b \mid \text {. }
\end{array}\right.
$$

24 Let S be a non-empty bounded set in R and $\mathrm{a}>0$ and $a \mathrm{~S}=(a s ; s \mathrm{E} \mathrm{S}\}$, prove that :

$$
\sup (a S)=a \cdot \sup S
$$

25 Prove that a sequence of real numbers is convergent iff it is a Cauchy sequence.
26 Prove that the intersection of arbitrary collection of closed sets is closed.
27 Prove that I $z_{1}+z 2$ I $\leq I^{z 1}{ }_{I}+\left.\right|_{z 2 I}$ 。
28 Locate the points in the complex plane for which $\mathrm{I} z-11^{2}+|z+1|=4$.
IV. Essay questions. Answer any two questions :
29. (a) Show that the set of all real numbers between 0 and 1 is uncountable.
(b) If $x_{n}=-\quad$ show that $\left[x_{n}\right]$ converges.
30. Show that a monotonic sequence of real numbers is convergent iff it is bounded.
31. (a) Prove that $\arg \left(z_{1} z_{z}\right)=\arg \quad+\arg z_{z}$.
(b) Find the value of $2 i$.
($2 \times 4=8$ weightage)

