FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2016 (CUCBCSS-UG)
 Mathematics
 MAT 5B 06-ABSTRACT ALGEBRA

Maximum : 120 Marks

Section A

Answer all the twelve questions.
Each question carries 1 mark.

1. Find the identity element in the binary structure $<\mathrm{Q}, *>$ if it exists when $\mathrm{a} * b=a b / 5$ for all $\mathrm{a}, b \in \mathbb{Q}$.
2. Define subgroup of a group.
3. Express the additive inverse of 21 in the group $\left\langle Z_{75},+{ }_{75}\right\rangle$ as a positive integer in $\left\langle Z_{75}\right\rangle$.
4. Fill in the blanks : Order of the group of symmetries of a square is
5. Define a division ring.
6. How many elements are there in the ring of matrices $\mathrm{M}_{2}\left(\mathrm{Z}_{2}\right)$?
7. Fill in the blanks: Order of the subgroup $\mathrm{A}_{7} \mathrm{~S}_{7}$ is
8. Fill in the blanks : One non-zero solution of $x^{2}=0$ in Z_{50} is
9. Define index of a subgroup H in a group G.
10. What is the characteristic of the ring of real numbers under usual addition and multiplication ?
11. Define a cyclic group. Give an example of a non-cyclic group.
12. Write any two units in the ring of Guassian integers $\{a+i b: a, b \mathrm{E} Z\}$.

Section B

Answer any ten out of fourteen questions.
Each question carries 4 marks.
13. Determine whether the set of all real square matrices of order n is a group under matrix multiplication or not. Justify your claim.
14. Establish any necessary and sufficient conditions for a set H to be a subgroup of a group G.
15. Determine the number of group homomorphisms from Z into Z.
16. What is an octic group? Is it an abelian group ? Justify your claim.
17. Define a ring and give an example of a finite ring which is not an integral domain.
18. Show that the identity and inverse in a group are unique.
19. Give an example of a finite group with the identity element e where the equation $x^{2}=e$ has more than two solutions. Prove your claim.
20. Give two examples of non-trivial proper subgroups of Z.
21. Show that every field is an integral domain but not conversely.
22. State Lagranges theorem and prove any result which can be established as a corollary to it.
23. If H is a subgroup of index two in a finite group G , show that H a G .
24. Show that arbitrary intersection of subgroups is a subgroup.
25. Find all the units in the ring Z_{10}.
26. Show that the characteristic of an integral domain is either 0 or a prime p.

$$
\text { (10 x } 4=40 \text { marks })
$$

> Section C
> Answer any six out of nine questions.
> Each question carries 7 marks.
27. If G is a finite group with identity element e show that for any a in G there exists a positive integer n such that $a n=e$.
28. Show that every permutation a of a finite set is a product of disjoint cycles.
29. Show that the subset S of $M_{n}(R)$ consisting of all invertible $n x \mathrm{n}$ matrices under matrix multiplication is a group.
30. Show that every permutation a of a finite set is a product of disjoint cycles.
31. Define an automorphism of a group. Show that all automorphisms of a group G form a group under function composition.
32. If a is an integer relatively prime to n, then show that a ${ }^{\phi(n)}-1$ is divisible by n.
33. Solve : $\mathrm{x}^{2}=\boldsymbol{i}$ in S_{3} where \boldsymbol{i} is the identity.
34. Show that every finite integral domain is a field.
35. Show that if H and K are two normal subgroups of a group G with $\mathrm{Hn} \mathrm{K}=\{\mathrm{e}\}$, then $h k=k h$ for all $h \mathrm{EH}$ and $k \in \mathrm{~K}$.
($6 \times 7=42$ marks $)$

Section D

Answer any two out of three questions.
Each question carries 13 marks.
36. Let G be cyclic group with generator a. If the order of G is infinite, then show that G is isomorphic to $<Z,+>$. If G has finite order n, then show that G is isomorphic to $<\mathbb{Z}_{n},+{ }_{n}>$.
37. (a) State and prove fundamental theorem for group homomorphism.
(b) Show that if a finite group G contains a non-trivial subgroup of index 2 in G, then G is not simple.
38. (a) Show that 15 divides the number $n^{3}-n$ for every integer n.
(b) Define an inner automorphism of a group G and give an example.

