\qquad
\qquad
FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2016 (CUCBCSS——UG)

Mathematics

MAT 5B 07—BASIC MATHEMATICAL ANALYSIS
Time : Three Hours
Maximum : 120 Marks

Section A
 Answer all the twelve questions. Each question carries 1 mark.

1. Define a countable set.
2. What do you mean by trichotomy law of real numbers ?
3. State Bernoulli's inequality.
4. Find all x satisfying $\mathrm{I} x-1 \mid<\mathrm{I} x \mathrm{I}$.
5. State the completeness property of the set of real numbers.
6. What are the conditions for a subset of real numbers to be an interval?
7. State Squeeze theorem for limit of sequences.
8. Give the divergence criteria for a sequence of real numbers.
9. Find $\operatorname{Arg}(z)$ if $z=-1-\mathrm{i}$.
10. Define contractive sequence.
11. Find the exponential form of $(\sqrt{3}-i$

Section B

Answer any ten out of fourteen questions.
Each question carries 4 marks.
13. Verify that the set of all integers z is denumerable.
14. If a $\mathbf{0}$ and $\mathbf{b} \mathbf{z} \mathbf{0}$, prove that $a<6$ if and only if $a^{2}<b^{2}$.
15. State and prove arithmetic-geometric mean inequality.

Turn over

16. Define infimum of a set. If $\left.S^{\mathbf{1}}: n \in N\right\}$, prove that $\inf (\mathbf{S})=\mathbf{0}$.
17. If $t>0$ prove that there is an n_{τ} in N such that $0<\frac{1}{n_{\iota}}<t$.
18. State and prove the betweenness property of irrational numbers.
19. Determine the set A of all x satisfying $\mid 2 x+3 \mathrm{I}<7$.
20. Test the convergence of the sequence $\left(x_{n}\right)$ if $\boldsymbol{x}_{n}=\begin{gathered}\sin \mathrm{n} \\ \mathrm{n}\end{gathered}$
21. Define Cauchy sequence. Find a sequence $\left(x_{n}\right)$ which is not Cauchy such that $\lim I \quad-x_{n+1} \mid=0$.
22. Prove that every convergent sequence of real numbers is a Cauchy sequence.
23. Show that subsequence of a converging real sequence always converge to the same limit.
24. State and prove Bolzano-Weierstrass theorem.
25. Find all values of $(-27 i)^{\overline{\underline{ }} \text {. }}$
26. Prove that I $\boldsymbol{z}_{\mathbf{1}}-\mathrm{z} 2$ I II $\boldsymbol{z}_{1} \mid{ }_{-1} \boldsymbol{z}_{\mathbf{2}}$ II for all $z_{\#}, \mathrm{Z}_{2}$ E C.
(10 x $4=40$ marks $)$

Section C

Answer any six out of nine questions.
Each question carries 7 marks.
-27. Show that the unit interval $[0,1]$ is uncountable.
28. Prove that there is a real x whose square is 2 .
29. If A is any set, prove that there is no surjection of A on to the set $\mathscr{\mathscr { F }}(\mathrm{A})$ of all subsets of A . Deduce that power set of natural numbers is uncountable.
30. If $I_{n}=\left[a_{n}, \boldsymbol{b}_{. .}\right], n E N$ is a nested sequence of closed and bounded intervals, prove that there is a real number which lies in I_{n} for all n.
31. Sate and prove monotone convergence theorem for a sequence.
32. Show that every contractive sequence is convergent.
33. Discuss the convergence of the following $\left(x_{n}\right)$ where (i) $x_{n}=\left(1+2\right.$; (ii) $x_{n} \quad \overline{m!}$.
34. State Cauchy's convergence criterion. Use it to test the convergence of $x_{n}=\underset{m=1}{\mathbf{E}} \mathrm{~m}$
35. Find the square roots of $\sqrt{3} i$ and express them in rectangular form.
($6 \times 7=42$ marks)

Section D

Answer any two out of three questions. Each question carries $\mathbf{1 3}$ marks.
36. (a) State and prove the characterization theorem for intervals.
(b) Show that between any two real numbers there is a rational number.
37. (a) State and prove the ratio test for the convergence of real sequences.
(b) If $\mathbf{a}>\mathbf{0}$ construct a sequence of real numbers which will converge to the square root of a.
38. (a) Let $X=\left(x_{n}\right)$ and $Y=\left(y_{n}\right)$ be real sequences that converge to x and y respectively. Prove the following :

$$
\begin{aligned}
& \text { (i) } \quad\left(x_{n} \quad y_{n}=x+y .\right. \\
& \text { (ii) } \lim \left(x_{n}-y_{n}\right)=x-y . \\
& \lim \left(x_{n} y_{. .}\right)=x y \\
& \text { (iv) } \lim (\quad=c x, c \in \mathbb{R} .
\end{aligned}
$$

(b) Discuss the convergence of $\frac{\mathrm{n} \text { ! }}{\mathrm{nn}}$.

