Name.....

(Pages : 3)

Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2016

(CUCBCSS-UG)

Mathematics

MAT 5B 07—BASIC MATHEMATICAL ANALYSIS

Time : Three Hours

Maximum: 120 Marks

Section A

Answer all the **twelve** questions. Each question carries 1 mark.

- 1. Define a countable set.
- 2. What do you mean by trichotomy law of real numbers ?
- 3. State Bernoulli's inequality.
- 4. Find all *x* satisfying I x 1 | < I x I.
- 5. State the completeness property of the set of real numbers.
- 6. What are the conditions for a subset of real numbers to be an interval ?

7. If a > 0 find $\lim_{a \to 0} \frac{1}{(1 + na)}$

- 8. State Squeeze theorem for limit of sequences.
- 9. Give the divergence criteria for a sequence of real numbers.
- 10. Find Arg (z) if z=-1-i.
- **11.** Define contractive sequence.
- 12. Find the exponential form of $(\sqrt{3} i)$

(12 x 1= 12 marks)

Section B

Answer any **ten** out of **fourteen** questions. Each question carries **4** marks.

13. Verify that the set of all integers z is denumerable.

- 14. If a 0 and b z 0, prove that a < 6 if and only if $a^2 < b^2$.
- 15. State and prove arithmetic-geometric mean inequality.

Turn over

- 16. Define **infimum** of a set. If $S = {}^{1} : n \in N$, prove that **inf (S) = 0**.
- 17. If t > 0 prove that there is an n_t in N such that $0 < \frac{1}{n_t} < t$.
- 18. State and prove the **betweenness** property of irrational numbers.
- 19. Determine the set A of all x satisfying | 2x + 3I < 7.
- 20. Test the convergence of the sequence (x_n) if $x_n = \frac{\sin n}{n}$
- 21. Define Cauchy sequence. Find a sequence (x_n) which is not Cauchy such that $\lim_{n \to \infty} |x_{n+1}| = 0$.
- 22. Prove that every convergent sequence of real numbers is a Cauchy sequence.
- 23. Show that subsequence of a converging real sequence always converge to the same limit.
- 24. State and prove Bolzano-Weierstrass theorem.
- 25. Find all values of $(-27 i)^{\frac{1}{2}}$.
- 26. Prove that I $\mathbf{z}_1 \mathbf{z}^2$ I $\mathbf{I}_1 \mathbf{z}_1 \mathbf{z}^2$ II for all $\mathbf{z}_2 \mathbf{z}_2 \in \mathbf{C}$.

(10 x 4 = 40 marks)

Section C

Answer any **six** out of **nine** questions. Each question carries 7 marks.

- 27. Show that the unit interval [0,1] is uncountable.
 - 28. Prove that there is a real x whose square is 2.
- 29. If A is any set, prove that there is no **surjection** of A on to the set $\mathcal{F}(\mathbf{A})$ of all subsets of A. Deduce that power set of natural numbers is uncountable.
- 30. If $I_n = [a_n, b_n]$, n E N is a nested sequence of closed and bounded intervals, prove that there is a real number which lies in I_n for all n.
- 31. Sate and prove monotone convergence theorem for a sequence.
- 32. Show that every contractive sequence is convergent.

33. Discuss the convergence of the following (x_n) where (i) $x_n = (1 + 2)$; (ii) $x_n = \frac{1}{m!}$

34. State Cauchy's convergence criterion. Use it to test the convergence of $x_n = \mathop{\mathbb{E}}_{m=1} \mathop{\mathbb{E}}_{m=1}$

35. Find the square roots of $\sqrt{3}$ *i* and express them in rectangular form.

(6 x 7 = 42 marks)

Section D

Answer any two out of **three** questions. Each question carries **13** marks.

36. (a) State and prove the characterization theorem for intervals.

(b) Show that between any two real numbers there is a rational number.

- 37. (a) State and prove the ratio test for the convergence of real sequences.
 - (b) If a > 0 construct a sequence of real numbers which will converge to the square root of a.
- 38. (a) Let $X = (x_n)$ and $Y = (y_n)$ be real sequences that converge to x and y respectively. Prove the following :
 - (i) $(x_n \quad y_n = x + y)$.
 - (*ii*) $\lim (x_n y_n) = x y_n$

 $\lim(x_ny_n)=xy.$

(iv) $\lim_{x \to \infty} (c \in \mathbb{R})$

(b) Discuss the convergence of $\frac{n!}{nn}$.

 $(2 \times 13 = 26 \text{ marks})$