FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

 (CUCSS)Chemistry
CH 1C O1—QUANTUM CHEMISTRY AND GROUP THEORY
(2015 Admissions)

Time : Three Hours
Maximum : 36 Weightage

> Part A
> Answer all questions.
> Each question carries a weightage of 1.

1. An electron is confined to one-dimensional box of length 10 nm . Find the uncertainty in momentum.
2. Which of the following are well behaved functions ? Justify your answer :
(a) e^{x}
(b) $e^{i x}$.
(c) $e^{-a x^{2}}$.
(d) Sin^{-1}
3. How does the concept of degeneracy arise in quantum mechanical problems?
4. Write Hamiltonian for (a) \mathbf{H}_{e}; (b) $\mathbf{H}_{\mathbf{2}}$.
5. Write Rodrigue's formula. Explain.
6. Where do you find maximum electron density for is wave function ? Justify your answer.
7. Explain spin functions and spin operators.
8. Write the examples for spherical harmonics.
9. Assign Schoenflies symbol of point group for the following :
(a) Cyclohexane (boat form).
(b) Allene.
10. Distinguish between inverse and conjugate operations with examples.
11. Explain the term 'Gamma cart'.
12. List symmetry operations possible as $\mathrm{D}_{3} \mathrm{~h}$. Classify them into different classes of operations.
(12 $\times 1=12$ weightage)

Part B

Answer any eight questions.
Each question carries a weightage of 2 .
13. Show that if the operators commute they will have the same set of eigen functions and eigen values.
14. Show that $\hat{\mathrm{L}}^{2}$ commutes with L :
15. Find the average value of position of a particle confined to one-dimensional box of length a $\psi_{a}=\sqrt{2 / a} \sin (\pi / a) x$.
16. Apply Schrödinger wave equation for a planar rotor. Find eigen functions and eigen values.
17. The is wave function is given as $\frac{1}{V}\left(\frac{1}{a_{0}}\right)^{3 / 2} e^{-r / a_{0}} \cdot$ Show that the maximum probability of find the electron is at $\mathrm{r}=\boldsymbol{a}_{\mathrm{u}}$.
18. Draw polar diagrams for 3d atomic orbitals. Discuss.
19. State and explain expectation value postulate.
20. What is block diagonalization ? Explain its significance.
21. Use Great Orthogonality theorem to show that 'sum of the squares of the characters of any representation is the order of the group'.
22. Derive C_{3} character table.
23. Taking the positional co-ordinates of all the atoms in ethylene $\left(\mathrm{D}_{\mathbf{2}} \mathrm{h}\right)$ derive a reducible representation (write only characters of the corresponding matrices). The symmetry operations are :
$\mathrm{E}, \mathrm{C} 2, \mathrm{C} 2, \mathrm{C} 2, \sigma_{h}, \sigma_{v}, \quad i \cdot$
24. Generate group multiplication table for $\mathrm{C}_{3} v$

Part C

Answer any two questions.
Each question carries a weightage of 4 .
25. Apply Schrödinger wave equation for a simple harmonic oscillator. Find eigen functions and eigen values.
26. Write Great Orthogonality theorem. What are the consequences of the theorem? Use the theorem to derive reduction formula.
27. Discuss the systematic procedure to assign Schoenflies symbol of point group.
28. Discuss briefly :
(a) Ladder operator.
(b) Lagendre polynomials.
(c) Postulate of spin by Uhlenbeck and Goudsmith.

$$
\text { (} 2 \times 4=8 \text { weightage) }
$$

