Name.....

Reg. **No**.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

(CUCSS)

Chemistry

CH 1C 01—QUANTUM CHEMISTRY AND GROUP THEORY

(2015 Admissions)

Time: Three Hours

Maximum : 36 Weightage

Part A

Answer all questions. Each question carries a *weightage* of 1.

- 1. An electron is **confined** to one-dimensional box of length 10 nm. Find the uncertainty in momentum.
- 2. Which of the following are well behaved functions ? Justify your answer :
 - (a) e^x (b) e^{ix} .
 - (c) e^{-ax^2} . (d) \sin^{-1}
- 3. How does the concept of degeneracy arise in quantum mechanical problems ?
- 4. Write Hamiltonian for (a) H_e ; (b) H_2 .
- 5. Write Rodrigue's formula. Explain.
- 6. Where do you find maximum electron density for is wave function ? Justify your answer.
- 7. Explain spin functions and spin operators.
- 8. Write the examples for spherical harmonics.
- 9. Assign Schoenflies symbol of point group for the following :
 - (a) Cyclohexane (boat form).
 - (b) Allene.
- 10. Distinguish between inverse and conjugate operations with examples.
- 11. Explain the term 'Gamma cart'.
- 12. List symmetry operations possible as D_3h . Classify them into different classes of operations.

 $(12 \times 1 = 12 \text{ weightage})$

Turn over

D 13266

(Pages : 3)

Part **B**

Answer any eight questions. Each question carries a weightage of 2.

- 13. Show that if the operators commute they will have the same set of eigen functions and eigen values.
- 14. Show that \hat{L} commutes with L.
- 15. Find the average value of position of a particle confined to one-dimensional box of length a $\psi_{\star} = \sqrt{\frac{2}{\alpha}} \sin\left(\frac{\pi}{\alpha}\right) x.$
- 16. Apply Schrödinger wave equation for a planar rotor. Find eigen functions and eigen values.
- 17. The is wave function is given as $\frac{1}{\sqrt{2}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$. Show that the maximum probability of find

1

the electron is at $r = a_{u}$.

- 18. Draw polar diagrams for 3d atomic orbitals. Discuss.
- 19. State and explain expectation value postulate.
- 20. What is block diagonalization ? Explain its significance.
- ^{21.} Use Great Orthogonality theorem to show that 'sum of the squares of the characters of any representation is the order of the group'.
- 22. Derive C_3 character table.
- 23. Taking the positional co-ordinates of all the atoms in ethylene (**D**₂**h**) derive a reducible representation (write only characters of the corresponding matrices). The symmetry operations are

E, C2, C2, C2, σ_h , σ_v , *i*.

24. Generate group multiplication table for C_{av}

 $(8 \ge 2 = 16 \text{ weightage})$

3

Part C

Answer any two questions. Each question carries a weightage of 4.

- 25. Apply Schrödinger wave equation for a simple harmonic oscillator. Find eigen functions and eigen values.
- 26. Write Great Orthogonality theorem. What are the consequences of the theorem ? Use the theorem to derive reduction formula.
- 27. Discuss the systematic procedure to assign Schoenflies symbol of point group.

28. Discuss briefly:

- (a) Ladder operator.
- (b) Lagendre polynomials.
- (c) Postulate of spin by Uhlenbeck and Goudsmith.

 $(2 \times 4 = 8 \text{ weightage})$