\qquad

Chemistry

CH 1C 02—ELEMENTARY INORGANIC CHEMISTRY
(2015 Admissions)

Time : Three Hours

Maximum : 36 Weightage

Part A

Answer all questions.
Each question carries 1 weightage.

1. Draw the Lewis structures for (i) \mathbf{O}_{2}; (ii) CaCl_{2}.
2. Give two examples of compounds that deviate from Octet rule.
3. Classify the following as Lewis acid or Lewise base giving reasons :
(i) BF_{3}.
(ii) NH_{3}.
4. What is meant by levelling effect? Give an example.
5. Classify the following compounds according to Wade's rule :
(i) $\mathrm{BaH}_{14}-$.
(ii) $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}$.
6. LiOH decomposes on red heat, while NaOH is stable. Give reason.
7. Predict the anions in the following silicates and draw their structures :
(i) Phenacite:
(ii) Thortveitite.
8. Identify the general class of following silicate minerals :
(i) Feldspar.
(ii) Benitoite.
9. When do the oxidation state other than $\mathbf{+ 3}$ occur in lanthanides.
10. Give the electronic configurations of $\mathrm{Gol}^{-}+$and Ce^{+}.
11. What is the nuclide \mathbf{A} formed in the reaction of ${ }^{-} \mathrm{Mg}(\mathbf{a}, \mathbf{n}) \mathbf{A}$?
12. The species ${ }^{15} 0$ and ${ }^{14} \mathrm{C}$ emits a position and a beta particle respectively. What are the resulting species formed?

Part B
Answer any eight questions.
Each question carries 2 weightage.
13. Apply VSEPR theory to predict the structure of :
(i) XeF_{4}; (ii) SF_{6}; (iii) COCl_{4}.
14. List the consequences of hydrogen bonding.
15. With equations and words, explain what happens :
(a) When metallic potassium is dissolved in NH_{3} to form a dilute solution.
(b) When more potassium is added to form concentrated solution.
(c) When (a) is treated with $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
(d) How can (c) be considered as a levelling reaction.
16. Complete and balance the following equations and identifying the acids and bases :
(i) $\mathrm{Sos}+\mathrm{K}_{2} \mathrm{O}-$
(ii) $\mathrm{MgO}+\mathrm{A1}_{2} \mathrm{O} 3 \longrightarrow$
17. With equations, show the following reaction :
(i) Pyrolysin of $\mathrm{B}_{3} \mathrm{H}_{8}^{-}$ion.
(ii) $\mathrm{Me}_{2} \mathrm{~S}$ reacted with $\mathrm{B}_{4} 11_{10}$.
(iii) $\quad \mathrm{BH}_{4}^{-}$and $\mathrm{B}_{2} \mathrm{H}_{6}$ reacted in situ.
18. Derive styx code for $\mathrm{B}_{0} \mathrm{H}_{11}$ and draw its structure.
19. How are a, $\beta-P_{4} S_{4}$ synthesised. Draw their structures ?
20. Give the synthesis of $\mathrm{S}_{4} \mathrm{~N}_{4}$ and describe its structure and bonding.
21. Sketch and discuss Effingham diagram and its utility.
22. Give an account on the hetero poly acids formed by Molybdenum and describe its structure.
23. Write note on : (i) GM counters; (ii) radiation dosimetry.
24. Outline the importance of neutron activation analysis.

> Part C
> Answer any two questions.
> Each question carries 4 weightage.
25. Discuss the Bent rule and the energies involved in hybridisation.
26. Detail the systematics of Lewis acid - Lewis base interactions in terms of Drago-Wayland equation.
27. Draw the structure of diborane and explain the bonding involved with suitable experimental evidences.
28. Discuss the structure and bonding in phosphazene by Craig and Paddock.
(2 $\times 4=8$ weightage)

