(Pages: 3)
Name \qquad
Reg. No.

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

 (CUCSS)
Chemistry
 CH 2C 05—APPLICATIONS OF QUANTUM MECHANICS AND GROUP THEORY
 (2015 Admissions)
 Time : Three Hours
 Maximum 36 Weightage

Part A

Answer all questions.
Each question carries a weightage of 1 .
. 1. State and explain independent particle model.
2. State and explain variation theorem.
3. Write Slater determinantal wave function for Li atom.
4. Distinguish between STO and GTO.
5. Arrange $\mathrm{O}_{2}, \mathrm{O}_{2}^{+}$and O_{2}^{-}in the increasing order of stability. Justify your answer.
6. Write spectroscopic term symbol for C_{2}.
7. it-molecular orbitals of benzene are $a+2 \beta, a+0, a+13, a-\beta, a-\beta$ and $a-2(3$. Calculate the delocalization energy.
8. Draw Frost-Hückel mnemonic device for cyclo-prophenyl cation. Explain.
9. State Laporte selection rules for centro symmetric molecules.
10. You are given the integral $\int_{-a}^{+\mathrm{a}} x^{2} \pi n$ Check whether it is a vanishing integral or not.
11. Write projection operator $\hat{\mathbf{I}}_{\mathrm{A}_{1}}$ for $\mathrm{C}_{2_{\mathrm{v}}}$.
12. Distinguish between SALC and SAGO. State the conditions underwhich SALC becomes equal to SAGO.

Part B
Answer any eight questions.
Each question carries a weightage of 2 .
13. Find the ground state energy a particle confined to one-dimensional box of length 'a'. Use the trial function $\Phi=x(a-\mathrm{x})$.
14. Find the ground state energy of He by first order perturbation method.
15. Briefly explain Roothan's concept of basis functions.
16. State and explain non-crossing rule.
17. Apply HMO method to find the π-molecular orbitals and their energy values for allyl cation.
18. State mutual exclusion principle rationalise using group theory.
19. Find Raman and IR active vibrations of $\mathrm{H}_{2} \mathrm{O}$. Use $\mathrm{C}_{Z V}$ character table :

$\boldsymbol{r}_{2 v}$	E	$\mathrm{C}_{2 \mathrm{z}}$	$\sigma_{v x z}$	$c^{c} \mathrm{y} z$		
$\mathrm{~A}_{\mathbf{1}}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	z	$\mathrm{x}^{2}, y^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	$\mathbf{1}$	$\mathbf{1}$	-1	-1	$\mathrm{R} z$	$x y$
$\mathbf{B}_{\mathbf{1}}$	$\mathbf{1}$	-1	$\mathbf{1}$	-1	$x, \mathrm{R} y$	$x z$
$\mathrm{~B}_{2}$	$\mathbf{1}$	-1	-1	$\mathbf{1}$	$\mathrm{y}, \mathrm{R} x$	$y z$

20. Find the symmetry species of molecular orbitals of $\mathrm{HCHO}\left(e_{Z \mathrm{~V}}\right)$. Use $\mathrm{C}_{z v}$ character table given in Question No. 19.
21. Discuss bonding in $\mathrm{H}_{2} \mathrm{O}$ using quantum mechanical approach.
22. Briefly discuss Hartree self consistent field method of solving many electron atoms.
23. State and explain Born-Oppenheimer approximation. Discuss its significance.
24. Find hybridized orbitals of B in BF_{3}. Use $\mathrm{D}_{3} h$ character table :

$\mathrm{D}_{3 h}$	E	$2 \mathrm{O}_{3}$	C_{2}	$\mathbf{6} h$	$2 s_{3}$	3		
$\mathrm{~A}_{\mathbf{1}}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$		$x^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
A 2	$\mathbf{1}$	$\mathbf{1}$	$-\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	-1	R_{\sim}	
	2	-1	0	2	-1	0	(x, y)	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, x y\right)$
A_{1}	1	1	1	-1	-1	-1		
$\mathrm{~A}_{2}$	1	1	-1	-1	-1	1		
	2	-1		-2	1	0	$(\mathrm{R} x, \mathrm{Ry})$	$(x z, y z)$

Part C

Answer any two questions.
Each question carries a weightage of 4 .
25. Compare V.B. and M.O. method of bonding as applied to H_{2}. Which is found better ? Justify your answer.
26. Apply HMO method for n bonding in butadiene. Find the energy of it molecular orbitals.
27. Find IR and Raman active vibrations of ammonia. Use $\mathrm{C}_{3 \mathrm{~V}}$ character table given below.
28. Find the ground state energy of H atom by variation method using the trial function $=e^{-a r}$.

$\mathrm{C}_{3 v}$	E	$2 \mathrm{C}_{3}$			
$\mathrm{~A}_{1}$	1	1	1	z	$x^{\wedge}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	R_{ι}	
E	2	-1	0	$(x, y)\left(\mathrm{R}_{\iota}, \mathrm{R}_{y}\right)$	$\left(\mathrm{x}^{2} \quad y^{\wedge}, x y\right)(x z, y z)$

