Name.....

Reg. **No....**

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

(Pages : 3)

Chemistry

CH 2C 05—APPLICATIONS OF QUANTUM MECHANICS AND GROUP THEORY

(2015 Admissions)

Time : Three Hours

Maximum 36 Weightage

Part A

Answer **all** questions. Each question carries a *weightage* of 1.

- 1. State and explain independent particle model.
- 2. State and explain variation theorem.
- 3. Write Slater determinantal wave function for Li atom.
- 4. Distinguish between STO and GTO.
- 5. Arrange $0_2, 0_2^+$ and 0_2^- in the increasing order of stability. Justify your answer.
- 6. Write spectroscopic term symbol for C_2 .
- 7. it-molecular orbitals of benzene are $a + 2\beta$, a + 0, a + 13, $a \beta$, $a \beta$ and a 2(3). Calculate the delocalization energy.
- 8. Draw Frost-Hückel mnemonic device for cyclo-prophenyl cation. Explain.
- 9. State Laporte selection rules for centro symmetric molecules.
- 10. You are given the integral $\int_{-a}^{+a} Check$ whether it is a vanishing integral or not.
- 11. Write projection operator $\hat{\mathbf{I}}_{\mathbf{A}_1}$ for $\mathbf{C}_{\mathbf{2}_v}$.
- 12. Distinguish between **SALC** and SAGO. State the conditions **underwhich SALC** becomes equal to SAGO.

 $(12 \times 1 = 12 \text{ weightage})$

Turn over

C 4755

Part B

Answer any eight questions. Each question carries a weightage of 2.

- 13. Find the ground state energy a particle confined to one-dimensional box of length 'a'. Use the trial function $\Phi = x(a - x)$.
- 14. Find the ground state energy of He by first order perturbation method.
- 15. Briefly explain Roothan's concept of basis functions.
- 16. State and explain non-crossing rule.
- Apply HMO method to find the π -molecular orbitals and their energy values for allyl cation. 17.
- 18. State mutual exclusion principle rationalise using group theory.
- 19. Find Raman and IR active vibrations of H_2O . Use C_{zy} character table :

C_{2v}	Е	C _{2z}	Tuxz	۲ у ر		
A1	1	1	1	1	Z	x^{2}, y^{2}, z^{2}
A_2	1	1 —1	-1 1	-1	Rz	xy
$\mathbf{B_1}$	1	-1		-1	Rz x, Ry y, Rx	xz
B_2	1	-1	—1	1	y, Rx	yz

- 20. Find the symmetry species of molecular orbitals of HCHO (e_{zv}). Use C_{zv} character table given in Question No. 19.
- 21. Discuss bonding in H_2O using quantum mechanical approach.
- 22. Briefly discuss Hartree self consistent field method of solving many electron atoms.
- 23. State and explain Born—Oppenheimer approximation. Discuss its significance.
- 24. Find hybridized orbitals of B in BF_3 . Use D_3h character table :

D_{3h}	Е	20 ₃	C_2	6 h	2s3	3		
A1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A2	1	1	—1	1	1	-1	R	
	2	—1	0	2	—1	0	(x, y)	$(x^2 - y^2, xy)$
A	1	1	1	—1	—1	—1		
A_2	1	1	—1	—1	—1	1		
	2	—1		-2	1	0	$(\mathbf{R}x,\mathbf{R}y)$	(xz, yz)

 $(8 \ge 2 = 16 \text{ weightage})$

Part C

Answer any two questions. Each question carries a weightage of 4.

- 25. Compare **V.B.** and M.O. method of bonding as applied to H₂. Which is found better ? Justify your answer.
- 26. Apply HMO method for n bonding in butadiene. Find the energy of it molecular orbitals.
- 27. Find IR and Raman active vibrations of ammonia. Use $C_{\!_{\rm 3V}}$ character table given below.
- 28. Find the ground state energy of H atom by variation method using the trial function $=e^{-ar}$.

C_{3v}	Е	$2C_3$			
A ₁	1	1	1	Z	$x^{+} + y^{2}, z^{2}$
A_2	1	1	—1	R	
Е	2	—1	0	(x, y) $(\mathbf{R}_{x}, \mathbf{R}_{y})$	$(\mathbf{x}^2 \mathbf{y}^2, \mathbf{x}\mathbf{y}) (\mathbf{x}\mathbf{z}, \mathbf{y}\mathbf{z})$
					$(2 \times 4 = 8 \text{ weightage})$