\qquad

Reg. No

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

Computer Science
CSS 2C 01—DESIGN AND ANALYSIS OF ALGORITHMS
(2014 Admissions)

Time : Three Hours
Maximum : 36 Weightage
Part A
Answer all questions. Each question carries 1 weightage.

1. What is a RAM Model ?
2. What do you mean by Amortized analysis ?
3. Define Big Omega. What is its significance?
4. Give four examples of Divide and Conquer algorithms.
5. Explain Travelling Salesman Problem.
6. Name any one algorithm with Non-Polynomial complexity.
7. Define NP hard problem.
8. CRCW stands for
9. Name a problem which is an apt candidate for Branch and Bound strategy.
10. What do you mean by Write conflict?
11. What do you mean by approximate algorithm 7
12. State Cook's theorem.
(12 $\times 1=12$ weightage)

Part B

Answer any six questions.
Each question carries 2 weightage.
13. Give asymptotic upper and lower bounds for $T(n)$ in the following recurrence. Assume $T(n)$ is constant for $\mathrm{n}<=2$. Make your bounds as tight as possible : $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}^{3}$.
14. Show that any comparison algorithm requires $\Omega(n \log n)$ comparisons in the worst case.
15. Explain the basic principle of Dynamic programming.
16. Compare backtracking and Branch and Bound.
17. Prove that if any NP complete problem is Polynomial time solvable then $P=N P$.
18. Explain Clique problem.
19. Give a Greedy Solution for Knapsack problem.
20. Explain Brent's theorem.
21. Explain parallel merging.

Part C

Answer any three full questions.
Each Question carries 4 weightage.
22. Perform average case analysis of Quick sort.
23. Give an overview of analysis of Knuth-Morris-Pratt algorithm.
24. (a) Write and explain Kruskel's algorithm.
(b) Discuss a dynamic algorithm for optimal Binary Search Tree.
25. Explain Vertex Cover Problem. Show that Vertex Cover Problem is NP Complete.
26. Discuss PRAM models and relation between them.
27. Discuss parallel algorithm to find Connected components.

$$
\text { (} 3 \times 4=12 \text { weightage) }
$$

