Name. \qquad
\qquad
FIRST SEMESTER M.Sc. DEGREE. EXAMINATION, DECEMBER 2016

(CUCSS)

Mathematics

MT 1C 02—LINEAR ALGEBRA
 (2010 Admissions)

Time : Three Hours
Maximum : 36 Weightage
Part A (Short Answer Type)
Answer all the questions.
Each question carries weightage 1.

1. Write an example for a non-trivial subspace of the two dimensional Eu-clidean space? Justify your claim.
2. Define $\mathbf{T}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{2}}$ by the rule $\mathbf{T}(x, y)=(\sin x, y)$. Is \mathbf{T} a linear transformation? Justify your claim.
3. Define basis of a vector space.
4. Let V be a finite dimensional vector space. What is the minimal polynomial for the identity operator on V.
5. Describe explicitly an inner product on R, the set of real numbers.
6. Let F be a field and let T be the linear operator on F^{2} defined by $T\left(x_{i}, x_{2}\right)=\left(x_{1}+x_{2}, x_{i}\right)$. Prove that T is non-singular.
7. Define hyperspace of a vector space.
8. Define inner product space.
9. Prove that R^{2} is a subspace of the inner product space R^{3} with usual inner product.
10. Verify whether the vectors $(1,2),(-2,1)$ are orthogonal in R^{2}.
11. Find the characteristic polynomial of the matrix (1) 4).
12. Suppose that $T \alpha=c a$. If f is any polynomial, prove that $f(T) a=f(c) a$.
13. State the Cayley-Hamilton theorem.
14. Show that an orthogonal set of non-zero vectors is linearly independent.
($14 \times 1=14$ weightage)

Part B (Paragraph Type)

Answer any seven questions.
Each question carries weightage 2.
15. Prove that the intersection of any two sub spaces of a vector space V is again a sub space of V.
16. Let $[a, b]$ be a closed interval on the real line and $C \quad b]$) be the space of all continuous real valued functions on $[\mathrm{a}, \mathrm{b}]$. Then prove that $\mathrm{L}(g)=\int_{\mathrm{a}}^{\mathrm{b}} g(t) d t$ defines a linear functional on

C

17. If \mathbb{W}_{1} and W_{2} are finite dimensional subspaces of a vector space V, then prove that $W_{1}+W_{2}$ is finite dimensional and $\operatorname{dim} W_{1}+\operatorname{dim} W_{2}=\operatorname{dim}\left(W_{1} n W_{2}\right)+\operatorname{dim}\left(W_{1}+W_{2}\right)$.
18. If A is an $m x n$ matrix with entries in the field F, then prove that row $\operatorname{rank}(A)=\operatorname{column} \operatorname{rank}(A)$.
19. Let T be the linear operator on R^{2} defined by $T\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$. What is the matrix of T in the standard basis for \mathbf{R}^{2} ?
20. Define annihilator of a subset of a vector space. State and prove the relation that connects the dimensions of a vector space, that of its subspace and of the annihilator space of this subspace.
21. Define transpose of a linear transformation from one vector space to another. If the vector spaces are finite dimensional, prove that rank of a linear transformation is equal to the rank of its transpose.
22. If A and B are $n \times n$ complex matrices, show that $A B-B A=I$ is impossible.
23. Define characteristic polynomial of a matrix. Prove that similar matrices have the same characteristic polynomial.
24. Prove that if E is a projection of R along N, then $(I-E)$ is a projection or N along R.

$$
\text { (} 7 \times 2=14 \text { weightage) }
$$

Part C (Essay Type)

Answer any two questions.
Each question carries weightage 4.
25. Let \mathbf{V} be an m-dimensional vector space over the field F and W be an n-dimensional vector spaces over F. Then with usual assumptions prove that the space $L(V, W)$ is a finite-dimensional vector space of dimension $m n$.
26. Prove that every finite dimensional inner product space has an orthonormal basis.
27. Let W be a finite dimensional subspace of an inner product space V and E be an orthogonal projection of V on W . Then prove that E is an idempotent linear transformation of V onto W , W is the null space of E , and $\mathrm{V}=\mathrm{W}$
28. Let W be a finite dimensional subspace of an inner product space V and E be an orthogonal projection of V on W . Then prove that $\mathrm{I}-\mathrm{E}$ is the orthogonal projection of V on W^{\perp}. Also prove that $\mathrm{I}-\mathrm{E}$ is an idempotent linear transformation of V onto W^{\perp} with null space W .

