\qquad
\qquad
FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016 (CUCSS)

Mathematics
MT 1C O1—ALGEBRA—I
(2010 Admissions)

Time : Three Hours
Maximum : 36 Weightage

> Part A
> Answer all questions.
> Each question carries weightage 1.

1. Verify whether the map $(x, y) H(x+1, y)$ is an isometry of the plane which maps the X-axis to X-axis.
2. Verify whether the direct product $Z_{2} \times Z_{4}$ is isomorphic to Z_{8}.

- Find the order of the element $(2,3)$ in $Z_{3 \times 7} \times Z_{6}$.

4. For binary codes u, v of same length prove that if $d(u, v)=\mathbf{0}$ then $\mathrm{u}=\mathrm{v}$.
5. List the elements of the quotient group Z_{6} / H where H is the subgroup generated by 2 .
6. Give a composition series which is a refinement of $(0) \mathrm{s}<3>5 \mathrm{Z}_{12}$.
7. Let H be a subgroup of a group G and G be an H - set defined by $h^{*} g=h g$. Find the orbit of g where g is an element of G and $g \mathrm{H}$.
8. Find the number of sylow 5-subgroups of a group of order 15 .
9. If $\mathrm{w}=\mathrm{a}_{1} a_{2}^{2} \mathrm{a} 3^{1}$ and $\mathrm{v}=\mathrm{a}_{3} a_{2}^{-{ }^{-}} \mathrm{a}_{1}$ find the reduced word corresponding to $w v$.
-10. List all the elements of the group whose presentation is $(x, y: x \hat{y}=x y, x y x=y)$.
10. Verify whether $x-1$ is a factor of $2 \mathrm{x}-3 \mathrm{x}^{2}+1$ in $\mathbf{Q}[x]$.
11. Verify whether $\mathrm{x}^{5}+3 \mathrm{x}^{3}+6 \mathrm{x}+3$ is irreducible in $\mathrm{Q}[x]$.
12. Find the multiplicative inverse of $2 i+j+k$ in the skew field of quaternions.
13. Verify whether the ring of all 2×2 matrices over- is a field.
(14 x $1=14$ weightage)

Part B

Answer any seven questions.
Each question carries weightage 2.
15. Prove that $Z_{3} \times 7 L_{5}$ is isomorphic to 76_{15}.
16. Prove that if m divides the order of a finite abelian group G then G has a subgroup of order m.
17. Let H be a normal subgroup of a group G and $: \mathrm{G} \quad \mathrm{G} / \mathrm{H}$ be defined by ${ }_{4}(x)=x \mathrm{H}$. Show that $\operatorname{ker} \phi=\mathbf{H}$.
18. Let $\mathbf{G}=\mathbf{H} \times \mathbf{K}$ be a direct product of groups. Let $\overline{\mathrm{K}}=\{(e, k): k e K$.$\} Show that \mathrm{G} /$. isomorphic to H.
19. Let X be a G-set. Let \sim be a relation on X defined by $\boldsymbol{x} \quad$ y if $\mathrm{y}=g x$ for some g e G. Show that is an equivalence relation on X.
20. Let H and K be normal subgroups of a group G such that $K \mathbf{c}$. Show that Gill is isomorphic to $(\mathrm{G} / \mathrm{K}) /(\mathrm{H} / \mathrm{K})$.
21. Prove that every group of order $\mathbf{8 1}$ is solvable.
22. Let $F[x]$ be ring of polynomials over a field F. Let $\phi: F(x) \rightarrow F$ be defined by $\mathbf{a}_{0}+a_{1} x+\ldots \ldots+a_{n} x^{n} \mapsto a_{\mathrm{U}}$. Show that 4) is a homomorphism of rings.
23. Show that $x^{3}=2$ has no solutions in rational numbers.
24. Show that quaternion multiplication is not commutative.

Part C

Answer any two questions.
Each question carries weightage 4.
25. Define direct product of two groups G_{1} and G_{2}. Prove that if a E G1 is of order m and $b \mathrm{EG} 2$ is of order n then order of $(\mathrm{a}, b) \in \mathrm{G}_{1} \times \mathrm{G} 2$ is the lem of m and n .
26. Let X be a G-set. For each $g \mathrm{E}$ G let $\sigma_{g}: \mathrm{X} \rightarrow \mathrm{X}$ be defined be $\mathrm{x} \mapsto g x$. Prove that σ_{-}is a permutation on X .
27. Define Sylow p-subgroups of a group G. Show that any two Sylow p-subgroups of a group G are conjugates.
28. Show that the set of all quaternions form a skew field, but not a field.

