FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016 (CUCSS)

Mathematics

MT 1C 01—ALGEBRA—I
 (2016 Admissions)

Time : Three Hours
Maximum : 36 Weightage

- Part A

Answer all questions.
Each question has weightage 1.

1. Verify whether $+(x, y)=(x+y, 0)$ is an isometry of the plane.
2. Find the order of $(2,6)$ in the group $\mathrm{Z}_{4} \times \mathrm{Z}_{12}$.
3. Give two non-isomorphic groups of order 8 .
4. Let G be the cyclic group Z_{4} and $\mathrm{X}=\{1,2,3,4\}$ with action given by $\boldsymbol{a} \cdot \boldsymbol{x}=\boldsymbol{a}+x(\bmod 4)$. Find the isotropy group \mathbf{G}_{α} for $x=1$.
5. Verify whether the series $(0) \ll 5><\mathrm{Z} 15$ and $(0) \ll 3><76_{15}$ are isomorphic.
6. Find the commutator subgroup of the symmetric group 8_{3}.
7. Find a subgroup of order 4 in $\mathrm{Z}_{6} \times \mathrm{Z}_{6}$.
8. Find the number of 3 -sylow subgroup of a group G where $\mathrm{I} \mathrm{G} 1=18$.
9. Let II, K be subgroups of a group G and $\mathrm{H} \mathbf{n} \mathrm{K}=\{\mathrm{e}\}$. Show that if $\boldsymbol{h}_{\mathbf{1}} \boldsymbol{k}_{\mathbf{1}}=\boldsymbol{h}_{\mathbf{z}} \boldsymbol{k}_{\mathbf{z}}$ for some $\boldsymbol{h}_{\mathbf{1}}, \mathrm{h}_{2} \mathrm{E} H$ and $k_{1}, k_{2} \in \mathrm{~K}$ then $\mathrm{h}_{\mathrm{i}}=\mathrm{h}_{2}$ and $\boldsymbol{k}_{\mathbf{1}}=\mathrm{k}_{2}$.
10. Find the number of elements in the group presented as $\left(x, y: x y=x, x^{2} y=y\right)$.
11. Let $: \mathbb{Q}[x] \mathbb{Q}$ be the evaluation homomorphism at 2 . Find Ker ϕ.
12. Verify whether $\mathrm{x}^{2}-x$ is irreducible in. $\mathbb{Q}[x]$.
13. Find the inverse of $(1+2 i+2 j)$ in the ring of quaternions.
14. Verify whether $\mathrm{N}=\{0,2,4)$ is an ideal of the ring Z_{6}.

Part B

Answer any seven questions.

Each question has weightage 2.
15. Find all generators of the cyclic group $7 \mathrm{~L}_{3} \times \mathrm{Z}_{4}$.
16. Show that there are only two non-isomorphic groups of order 25 .
17. Let $G=Z_{4} \times Z_{6}$. Find a subgroup H of order 2 in G such that Gill is cyclic.
18. Let G be the symmetric group S_{4} and $X=\{1,2,3,41$ with action given by a $\cdot x=(x)$ for all $\mathrm{a} \in \mathrm{G}$ and $x \in X$. Find the number of orbits in X.
19. Let N be a normal subgroup of a group G and H be a subgroup of G. Show that $H N=N H$.
20. Show that S_{3} is a solvable group.
21. Show that a free group on one generator is isomorphic of $(Z,+)$.
22. Show that the group presented by $\left(x, y: x^{2}=y^{3}=1, x y=y x\right)$ is isomorphic to the cyclic group Z_{6}.
23. Verify whether $x^{5}-3 x^{3}+9 x+6$ is irreducible in $\mathbb{Z}[x]$.
24. Let N be an ideal of a ring R . Show that 4$): \mathrm{R} \rightarrow \mathrm{R} / \mathrm{N}$ defined by $x 1 \rightarrow x+\mathrm{N}$ is a homomorphism of rings.

Part C

Answer any two questions.
Each question has weightage 4.
25. (a) Show that $\mathbb{Z}_{\mu l} \times \mathbb{Z}_{\|}$is isomorphic to $\mathbb{Z}_{\mu, t}$ if and only if ged of m and n is 1 .
(b) Show that if a is of order m in a group G_{1} and \boldsymbol{b} is of order n in a group \mathbf{G}_{2} then the order of
(a, b) in $G_{1} \times G_{2}$ is the $/ c m$ of m and n.
26. (a) Define simple group.
(b) Let G be a group and M be a normal subgroup of G. Show that G / M is simple if and only if M is a maximal normal subgroup of G.
27. Let H be a subgroup of G and N be a normal subgroup of G. Show that :
(a) N is a normal subgroup of HN .
(b) Hn N is a normal subgroup of H .
(c) HN / N is isomorphic to $\mathrm{H} /(\mathrm{H} \cap \mathrm{N})$.
28. (a) State the division algorithm in $\mathrm{F}[x]$ where F is a field.
(b) Show that the quotient and the remainder are unique in the division.
(c) Show that if a E F is a zero of $f(x)$ e F $[x]$ then $(x-\mathrm{a})$ is a factor of $f(x)$.
(2 $\times 4=8$ weightage)

