D 13187

(Pages s 2)

Name...

Reg. No

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

(CUCSS)

Mathematics

MT 1C 01—ALGEBRA—I

(2016 Admissions)

Time : Three Hours

• Part A

Answer all questions. Each question has weightage 1.

- 1. Verify whether +(x, y) = (x + y, 0) is an isometry of the plane.
- 2. Find the order of (2, 6) in the group $Z_{4X}Z_{12}$.
- 3. Give two non-isomorphic groups of order 8.
- 4. Let G be the cyclic group Z_4 and $X = \{1, 2, 3, 4\}$ with action given by $a \cdot x = a + x \pmod{4}$. Find the isotropy group G_x for x = 1.
- 5. Verify whether the series (0) <<5><Z15 and $(0) <<3><76_{15}$ are isomorphic.
- 6. Find the commutator subgroup of the symmetric group 8_{3} .
- 7. Find a subgroup of order 4 in $Z_6 \times Z_6$.
- 8. Find the number of **3-sylow** subgroup of a group G where I G1=18.
- 9. Let II, K be subgroups of a group G and H n K = {e}. Show that if $h_1k_1 = h_2k_2$ for some h_1 , $h_2 \in H$ and k_1 , $k_2 \in K$ then $h_1 = h_2$ and $k_1 = k_2$.
- 10. Find the number of elements in the group presented as $(x, y : xy = x, x^2 y = y)$.
- 11. Let $: \mathbb{Q}[x] \mathbb{Q}$ be the evaluation homomorphism at 2. Find Ker ϕ .
- 12. Verify whether $x^2 x$ is irreducible in. $\mathbb{Q}[x]$.
- 13. Find the inverse of (1 + 2i + 2j) in the ring of quaternions.
- 14. Verify whether N = $\{0, 2, 4\}$ is an ideal of the ring Z_6 .

(14 x 1 = 14 weightage)

Maximum: 36 Weightage

Turn over

Part B

Answer any seven questions. Each question has weightage 2.

- 15. Find all generators of the cyclic group $7L_{3 X} Z_{4}$.
- 16. Show that there are only two non-isomorphic groups of order 25.
- 17. Let $G = Z_4 \times Z_6$. Find a subgroup H of order 2 in G such that Gill is cyclic.
- 18. Let G be the symmetric group S_4 and $X = \{1, 2, 3, 41 \text{ with action given by a } \bullet x = (x)$ for all $a \in G$ and $x \in X$. Find the number of orbits in X.

19. Let N be a normal subgroup of a group G and H be a subgroup of G. Show that HN = NH.

- 20. Show that S_3 is a solvable group.
- 21. Show that a free group on one generator is isomorphic of (Z, +).
- 22. Show that the group presented by $(x, y: x^2 = y^3 = 1, xy = yx)$ is isomorphic to the cyclic group Z_6 .
- 23. Verify whether $x^5 3x^3 + 9x + 6$ is irreducible in $\mathbb{Z}[x]$.
- 24. Let N be an ideal of a ring R. Show that 4): $\mathbb{R} \to \mathbb{R}/\mathbb{N}$ defined by $x \to x + \mathbb{N}$ is a homomorphism of rings.

 $(7 \ge 2 = 14 \text{ weightage})$

Part C

Answer any two questions. Each question has weightage 4.

- 25. (a) Show that $\mathbb{Z}_m \times \mathbb{Z}_n$ is isomorphic to \mathbb{Z}_{mn} if and only if **gcd** of m and n is 1.
 - (b) Show that if a is of order m in a group G_1 and **b** is of order n in a group G_2 then the order of (a, b) in $G_1 \ge G_2$ is the /cm of m and n.
- 26. (a) Define simple group.
 - (b) Let G be a group and M be a normal subgroup of G. Show that **G/M** is simple if and only if M is a maximal normal subgroup of G.
- 27. Let H be a subgroup of G and N be a normal subgroup of G. Show that
 - (a) N is a normal subgroup of HN.
 - (b) H n N is a normal subgroup of H.
 - (c) HN/N is isomorphic to H/(H n N).
- 28. (a) State the division algorithm in $\mathbf{F}[x]$ where F is a field.
 - (b) Show that the quotient and the remainder are unique in the division.
 - (c) Show that if a E F is a zero of $f(x) \in F[x]$ then (x a) is a factor of f(x).

 $(2 \times 4 = 8 \text{ weightage})$