Name
Reg. No. ....................

# FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016 

(CUCSS)

## Mathematics

## MT 1C 02-LINEAR ALGEBRA <br> (2016 Admissions)

Time : Three Hours
Maximum : 36 Weightage

## Part A

## Answer all the questions.

Each question carries weightage 1.

1. Let $V$ be a vector space over a field $F$. Show that if 0 is the scalar zero then $0 . a=0$ for all $\mathrm{a} E \mathrm{~V}$.
2. Verify whether the vector $(3,-1,0,-1)$ is in the subspace of $\mathbf{R}^{4}$ spanned by the vectors $(2,-\mathbf{1}, \mathbf{3}, 2),(-\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{3})$ and $(\mathbf{1}, 1,9,-5) ?$
3. Let V be a vector space over a field F . Show that if $\mathrm{a}, 13$ and $y$ are linearly independent vectors in V , then $\mathrm{a}+(3,(3+\mathrm{y}$ and $y+\mathrm{a}$ are linearly independent in V .
4. Let $V$ be the vector space of all $n x n$ matrices over the field $F$, and let $B \varepsilon V$. If $T: V-4 V$ is defined by $\mathbf{T}(\mathbf{A})=\mathbf{A B}-\mathbf{B A}$ for $\mathbf{A} \mathrm{e} \mathrm{V}$, then verify that T is a linear transformation.
5. Let T be the linear operator on $\mathrm{C}^{3}$, where C in the field of complex numbers, for which :
$\mathbf{T}(\mathbf{1}, \mathbf{0}, \mathbf{0})=(\mathbf{1}, \mathbf{0}, i), \mathbf{T}(\mathbf{0}, \mathbf{1}, \mathbf{0})=(\mathbf{0}, \mathbf{1}, \mathbf{1}), \mathbf{T}(\mathbf{0}, \mathbf{0}, \mathbf{1})=(i, \mathbf{1}, \mathbf{0})$
Is T invertible? Justify your answer.
6. Let $\mathbf{T}$ be the linear transformation from $\mathbf{R}^{\mathbf{3}}$ into $\mathbf{R}^{\mathbf{2}}$ defined by $\mathbf{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}, 2 \mathrm{x}_{3}-\mathrm{x}_{\mathbf{i}}\right)$. If $B\{(1,0,-1),(1,1,1),(1,0,0)\}$ is an ordered basis for $R^{3}$ and $B^{\prime}\{(0,1),(1,0))$ is an ordered basis for $R^{\mathbf{2}}$, then what is the matrix of $T$ relative to ${ }_{R}$ and
7. Show that if $W_{1}$ and $W_{2}$ are subspaces of a finite-dimensional vector space $V$, then $W_{1}=W_{2}$ if $W^{\circ} 1=W_{2}$.
8. If $W$ is a subspace of a finite-dimensional vector space $V$ and if $\left\{_{\{1,}, g_{2, \ldots, \ldots} g_{s}\right\}$ is any basis for $W^{\circ}$, then show that $\mathbf{W}=\mathbf{m}_{\bullet i=1}^{N g .,}$ where $N g$. is the null space of $g_{i}$.
9. Let $A$ be an $n x n$ triangular matrix over the field $F$. Show that the characteristic values of $A$ are the diagonal entries of $A$.
10. Let $T$ be the linear operator on $\mathrm{R}^{2}$, the matrix of which in the standard ordered basis is $\left.\mathrm{A}=\left.\right|_{2} ^{1} \begin{array}{l}- \\ 2\end{array}\right]$. Prove that the only subspace of $R^{2}$ invariant under $T$ are $R^{2}$ and the zero subspace.
11. Let $\mathrm{E}_{1}$ and $\mathbf{E}_{2}$ be projections on a vector space $V$. Show that $\mathrm{E}_{1}+\mathbf{E}_{2}=\mathbf{I}$ iff $\mathrm{E}_{1} \mathrm{E}_{2}=0$.
12. Let (I) be the standard inner product on $R^{2}$. Show that for any a in $R^{2}$ we have $\mathrm{a}=\left(\mathrm{a} / e_{1}\right) e_{1}+\left(\mathrm{a} / \mathrm{e}_{2}\right) \mathrm{e}_{2}$ where $\mathrm{e}_{1}=(1,0)$ and $\mathrm{e}_{2}=(0,1)$.
13. Let W be a subspace of a finite dimensional inner product space V and E the orthogonal projection of $V$ on $W$. Show that the mapping $13 \rightarrow R-E \beta$ is the orthogonal projection of $V$ onto
14. Let $V$ be an inner product space, and let $a, R \varepsilon V$. Show that $a=R$ if and only if $(a / y)=(\beta / y)$ for every y e V.
(14 x $1=14$ weightage)

## Part B

Answer any seven questions.
Each question carries weightage 2.
15. Show that the subspace spanned by a non-empty subset $S$ of a vector space $V$ is the set of all linear combinations of vectors in S .
16. Suppose $P$ is an $n \times n$ invertible matrix over a field $F$. Let $V$ be an $n$-dimensional vector space over $F$, and let $B$ be an ordered basis of $V$. Show that there is a unique ordered basis $B^{\prime}$ of $V$ such that $=P[a] B^{\prime}$, for every $a c V$.
17. Let V and W be vector spaces over the same field of dimension n . Show that a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is invertible if and only if T is onto.
18. Let V and W be vector spaces over the field F and let u be an isomorphism of V onto W . Prove that $\mathrm{T} \quad u \mathrm{~T} u^{-1}$ is an isomorphism of $\mathrm{L}(\mathrm{V}, \mathrm{V})$ onto $\mathrm{L}(\mathrm{W}, \mathrm{W})$.
19. Let W be a subspace of a finite-dimensional vector 'space over a field F . Show that : $\operatorname{dim} W+\operatorname{dim} W=\operatorname{dim} V$.
20. Let $V$ be a finite dimensional vector space over the field $F$. Show that each basis for $V^{*}$ is the dual of some basis for V .
21. Let T be the linear operator on $\mathrm{R}^{3}$ which is represented in the standard ordered basis by the matrix

$$
\mathrm{A}=\begin{array}{rrr}
5 & -6 & -6 \\
-1 & 4 & 2 . \\
3 & -6 & -4
\end{array}
$$

22. Show that if $V$ is a finite dimensional vector space and if $V=W_{1} \oplus \mathbf{W}_{\mathbf{2}} E D \ldots \quad W_{K}$, Then there exists $k$ linear operators $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots \mathrm{E}_{k}$ on V such that:
(i) $\quad \mathrm{E}^{\mathbf{2}}=\mathrm{E}_{\imath}$ for $\boldsymbol{i}=1, \quad k$.
(ii) $\mathrm{E}_{\imath} \mathrm{E}=0$, if $i \neq j$.
(iii) $\mathrm{I}=+\quad+\ldots+\mathrm{E}_{R}$.
23. Show that if V is an inner product space, then for any vectors $\alpha, \beta$ in V Ka I $1^{3}$ )1,- 11a11.IIPI.
24. Let W be the subspace of $\mathrm{R}^{2}$ spanned by the vector $(3,4)$, where $\mathrm{R}^{2}$ is the inner product space with standard inner product. If $E$ in the orthogonal projection of $\mathbf{R}^{2}$ onto W , find :
(i) A formula for $E\left(x_{1}, x_{2}\right)$.
(ii) $W^{\perp}$

$$
'(7 \times 2=14 \text { weightage })
$$

## Part C

Answer any two questions.
Each question carries weightage 4.
25. Let $V$ and $W$ be vector spaces over the field $F$ and let $T$ be a linear transformation from $V$ into $W$. Show that if $V$ is finite dimensional then $\operatorname{rank}(T)+$ nullity $(T)=\operatorname{dim} V$.

## 26. Let $W$ be the subspace of $R^{5}$ which is spanned by the vectors

 $\alpha_{1}=(1,2,1,0,0), \alpha_{2}=(0,2,3,3,1), a_{3}=(1,4,6,4,1)$. Describe $W^{\circ}$ and find a basis for $W$.27. Let $V$ be a finite-dimensional vector space over the field $F$ and let $T$ be a linear operator on $V$. Show that $\mathbf{T}$ is diagonalizable if and only if the minimal polynomial for $\mathbf{T}$ has the form. $p\left(x-c_{1}\right)\left(x-c_{2}\right) \ldots\left(x-c_{k}\right)$, where $c_{1}, c_{2}, \ldots c_{k}$ are distinct elements in $\mathbf{F}$.
28. Let $W$ be a finite-dimensional subspace of an inner product space $V$ and let $E$ be the orthogonal projection of $V$ on $W$. Show that $E$ is an idempotent linear transformation of $V$ onto $W, W^{\perp}$ is the null space of $E$, and $V=W \mathbf{W}^{\mathbf{I}}$.
