D 13188

(**Pages : 3**)

Name

Reg. No.

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

(CUCSS)

Mathematics

MT 1C 02-LINEAR ALGEBRA

(2016 Admissions)

Time : Three Hours

Maximum: 36 Weightage

Part A

Answer all the questions. Each question carries weightage 1.

- 1. Let V be a vector space over a field F. Show that if 0 is the scalar zero then 0.a = 0 for all $a \in V$.
- 2. Verify whether the vector (3, − 1, 0, − 1) is in the subspace of **R**⁴ spanned by the vectors (2, − 1, 3, 2), (− 1, 1, 1, − 3) and (1, 1, 9, − 5) ?
- Let V be a vector space over a field F. Show that if a, 13 and y are linearly independent vectors in V, then a + (3, (3 + y and y + a are linearly independent in V.
- Let V be the vector space of all n x n matrices over the field F, and let B ε V. If T: V -4 V is defined by T (A) = AB BA for A e V, then verify that T is a linear transformation.
- 5. Let T be the linear operator on C³, where C in the field of complex numbers, for which : T (1, 0, 0) = (1, 0, *i*), T (0, 1, 0) = (0, 1, 1), T (0, 0, 1) = (*i*, 1, 0) Is T invertible ? Justify your answer.
- 6. Let T be the linear transformation from R³ into R² defined by T (x₁, x₂, x₃) = (x₁ + x₂, 2x₃ x_i). If B {(1, 0, -1), (1, 1, 1), (1, 0, 0)} is an ordered basis for R³ and B' {(0,1), (1, 0)} is an ordered basis for R², then what is the matrix of T relative to _R and
- 7. Show that if W_1 and W_2 are subspaces of a finite-dimensional vector space V, then $W_1 = W_2$ if $W_1^\circ = W_2^\circ$.
- 8. If W is a subspace of a finite-dimensional vector space V and if $\{g_1, g_2, \dots, g_n\}$ is any basis for W°,

then show that $W = \prod_{i=1}^{Ng.}$, where Ng. is the null space of g_i .

Turn over

- 9. Let A be an n x n triangular matrix over the field F. Show that the characteristic values of A are the diagonal entries of A.
- 10. Let T be the linear operator on \mathbb{R}^2 , the matrix of which in the standard ordered basis is $A = \begin{bmatrix} 1 & \\ 2 & 2 \end{bmatrix}^2$. Prove that the only subspace of \mathbb{R}^2 invariant under T are \mathbb{R}^2 and the zero subspace.
- 11. Let E_1 and E_2 be projections on a vector space V. Show that $E_1 + E_2 = I$ iff $E_1E_2 = 0$.
- 12. Let (I) be the standard inner product on \mathbb{R}^2 . Show that for any a in \mathbb{R}^2 we have $\mathbf{a} = (\mathbf{a}/\mathbf{e}_1)\mathbf{e}_1 + (\mathbf{a}/\mathbf{e}_2)\mathbf{e}_2$ where $\mathbf{e}_1 = (1, 0)$ and $\mathbf{e}_2 = (0, 1)$.
- 13. Let W be a subspace of a finite dimensional inner product space V and E the orthogonal projection of V on W. Show that the mapping $13 \rightarrow R E\beta$ is the orthogonal projection of V onto
- 14. Let V be an inner product space, and let a, $R \in V$. Show that a = R if and only if $(a / y) = (\beta / y)$ for every y e V.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carries **weightage** 2.

- ^{15.} Show that the subspace spanned by a non-empty subset S of a vector space V is the set of all linear combinations of vectors in S.
- 16. Suppose P is an n x n invertible matrix over a field F. Let V be an n-dimensional vector space over F, and let B be an ordered basis of V. Show that there is a unique ordered basis B' of V such that
 = P [a] B', for every a c V.
- 17. Let V and W be vector spaces over the same field of dimension n. Show that a linear transformation T: V → W is invertible if and only if T is onto.
- ^{18.} Let V and W be vector spaces over the field F and let u be an isomorphism of V onto W. Prove that T uTu^{-1} is an isomorphism of L (V, V) onto L (W, W).
- 19. Let W be a subspace of a finite-dimensional vector 'space over a field F. Show that dim W + dimW = dim V.
- 20. Let V be a finite dimensional vector space over the field F. Show that each basis for V^* is the dual of some basis for V.

21. Let T be the linear operator on \mathbb{R}^3 which is represented in the standard ordered basis by the matrix

$$5 - 6 - 6$$

$$A = -1 \quad 4 \quad 2. \text{ Show that T is diaonalizable.}$$

$$3 - 6 - 4$$

22. Show that if V is a finite dimensional vector space and if $V = W_1 \oplus W_2 ED \dots W_K$, Then there exists k linear operators E_1, E_2, \dots, E_k on V such that :

(i)
$$\mathbf{E}_{i}^{2} = \mathbf{E}_{i}$$
 for $i = 1$, k .

(*ii*)
$$\mathbf{E}_{i}\mathbf{E} = 0$$
, if $i \neq j$.

(iii)
$$\mathbf{I} = + + \dots + \mathbf{E}_{k}$$
.

- 23. Show that if V is an inner product space, then for any vectors α , β in V Ka I I^{3}]1,-11a11.IIPII.
- 24. Let W be the subspace of \mathbb{R}^2 spanned by the vector (3, 4), where \mathbb{R}^2 is the inner product space with standard inner product. If E in the orthogonal projection of \mathbb{R}^2 onto W, find :
 - (i) A formula for E (x_1, x_2) .
 - (ii) W[⊥]

 $'(7 \ge 2 = 14 \text{ weightage})$

Part C

Answer any two questions. Each question carries **weightage 4.**

- 25. Let V and W be vector spaces over the field F and let T be a linear transformation from V into W. Show that if V is finite dimensional then rank (T) + nullity (T) = dim V.
- 26. Let W be the subspace of \mathbb{R}^5 which is spanned by the vectors $\alpha_1 = (1, 2, 1, 0, 0), \alpha_2 = (0, 2, 3, 3, 1), \alpha_3 = (1, 4, 6, 4, 1)$. Describe W° and find a basis for W.
- 27. Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Show that T is diagonalizable if and only if the minimal polynomial for T has the form.

 $p(x-c_1)(x-c_2)...(x-c_k)$, where $c_1, c_2, ..., c_k$ are distinct elements in F.

28. Let W be a finite-dimensional subspace of an inner product space V and let E be the orthogonal projection of V on W. Show that E is an idempotent linear transformation of V onto W, W^{\perp} is the null space of E, and V = W W^I.

 $(2 \times 4 = 8 \text{ weightage})$