FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

 (CUCSS)Mathematics
MT 1C 03-REAL ANALYSIS—I
(2016 Admissions)
Time : Three Hours
Maximum : 36 Weightage

Part A (Short Answer Questions)
 Answer all questions.
 Each question has weightage 1.

1. Let X be a metric space. Define neighbourhood of $p \mathrm{E} X$ and prove that it is an open set.
2. Construct a bounded set of real numbers with exactly two limit points.
3. Let $\mathrm{E}=\left\{p_{\mathrm{E}} \mathrm{Q}: 2<p^{2}<3\right)$. Show that E is closed and bounded in Q . Is E compact.
4. Let $f:[0,2 \mathrm{n}) \rightarrow\{(\cos t, \sin t): t \mathrm{E}[0,2 \pi)\}$ be defined by $f(t)=(\cos t, \sin t)$. Verify whether f is a homeomorphism.
5. Identify the type of discontinuity at rational points $x=-\frac{1}{n}$ (where m and n are integers without any common divisors) of the function f defined by $f(x)=\left\{\begin{array}{ll}1_{\text {if } x} & \text { m } \\ n & n \\ 0 & \text { if } x\end{array}\right.$ is irrational.
6. Let f be defined on $[0,2]$ by $f(x)=\underset{\mathrm{x}+\mathrm{i}}{\boldsymbol{x}}$. If f uniformly continuous. Justify your answer.
7. If f is a real differentiable function defined on $[a, b]$ and $f^{\prime}(a)<c<f^{\prime}(b)$, prove that there is a point $x \mathrm{E}(\mathrm{a}, b)$ such that $f^{\prime}(x)=c$.
8. Prove that $\lim _{x \rightarrow 0} \sin x=0$.
9. Explain whether the Mean Value theorem is applicable to $f(x)=2+(x-1)^{3}$ in [0, 2].
10. If f is bounded on $[\mathrm{a}, b], f$ is continuous at s where $\mathrm{a}<s<b$ and $\mathrm{a}(\mathrm{x})=\mathrm{I}(x-s)$ where I is the unit step function defined by $\mathbf{I}(\mathbf{x})=0$ if $x \quad 0$ and $\mathbf{I}(x)=1$ if $x>0$, then prove that $\int_{u}^{x} f d \alpha \quad f(s)$.
11. If f is continuous on $[a, b]$ and a has a continuous derivative on $[a, b]$ then prove that

$$
{ }_{a}^{b} f d \alpha={ }_{a} f \alpha^{\prime} d x
$$

12. Define a rectifiable curve. Give an example of a rectifiable curve.
13. Let $\left\{f_{n}\right\}$ be a sequence of functions differentiable on $[a, b]$ such that $\left\{f_{i c}\left(x_{0}\right)\right\}$ converges for some point x_{u} on $[a, b]$. If $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$, prove that $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$.
14. Define equicontinuous family of functions. State a sufficient condition for a family $\left\{f_{n}\right\}$ of continuous functions defined on a compact metric space K to be equicontinuous on K .
(14 $\times 1=14$ weightage $)$

Part B

Answer any seven questions from the following ten questions. Each question has weightage 2.
15. Prove that the interior of a set S is the largest open subset of S .
16. Define a compact set. Explain with details why $S=(0,1)$ is not compact.
17. If F is closed and K is compact prove that $\mathrm{F} \mathrm{n} \mathbf{K}$ is compact.
18. If $f: X \rightarrow Y$ is continuous where X is a compact metric space and Y is a metric space, prove that f is uniformly continuous on X .
19. Prove that monotonic functions have no discontinuities of the second kind.
20. State Taylors theorem. Illustrate with an example.
21. If f is bounded in $[a, b], f$ has only finitely many points of discontinuities on $[a, b]$ and a is continuous at every point at which f is discontinuous, prove that $f \mathrm{E} \mathscr{R}(\mathrm{a})$ on $[\mathrm{a}, b]$.
22. If f is Riemann integrable on $[a, b]$ and if there exists a differentiable function F such that $\mathrm{F}^{\prime}=f$, prove that $\int_{a}^{b} f(x) d x=\mathrm{F}(b)-\mathrm{F}(\mathrm{a})$.
23. If $\left\{f_{i s}\right\}$ is a sequence of continuous functions defined on E in a metric space and if $f_{n} \mathcal{F}$ uniformly on E prove that f is continuous on E .
24. If $\mathrm{f}_{\mathrm{n}} \mathcal{f}$ uniformly on $[a, b], f_{n} \mathrm{E} \mathrm{R}(\mathrm{a})$ on $[\mathrm{a}, \mathrm{b}]$ where a is monotonically increasing on $[\mathrm{a}, \mathrm{b}]$, prove that $f E \mathscr{R}(\mathrm{a})$ on $[\mathrm{a}, \mathrm{b}]$ and $\int_{a}^{b} f d \alpha=\lim _{\mathrm{n} \in W} \int_{a}^{b} f_{n} d \alpha$.
($7 \times 2=14$ weightage $)$

Part C

Answer any two questions from the following four questions.
Each question has weightage 4.
25. (a) Let X be a compact set in R and A c X be closed. Prove that A is compact.
(b) Let X and Y be metric spaces. Prove that $f: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous if and only if $f^{-1}(\mathrm{C})$ is closed in X for every closed set C in Y .
26. Let a increases monotonically and $a^{\prime} \mathrm{E}$ on $[a, b]$. If f is a bounded real function on $[a, b]$ prove that $f \in \mathscr{R}(\mathrm{a})$ on $[\mathrm{a}, b]$ if and only if $f a^{\prime} \mathrm{E} \mathscr{R}$. Also prove that $\int_{a}^{b} f d \alpha \int_{a}^{b} f(x) \mathrm{a}^{\prime}(\mathrm{x}) d x$.
27. Prove that there exists a real continuous function on the real line which is nowhere differentiable.
28. State and prove the Stone-Weierstrass theorem.

