\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

(CUCSS)

Mathematics
MT 1C 04-ODE AND CALCULUS OF VARIATIONS
(2010 Admissions)

Time : Three Hours
Maximum : 36 Weightage
Part A
Answer all questions.
Each question carries 1 weightage.

1. Define radius of convergence of a power series and determine the same for the power series :

2. Locate and classify the singu ar points on the x-axis for the equation $(3 x+1) x y^{\prime \prime}-(x+1) y^{\prime}+2 y=0$.
3. Evaluate • $\lim _{b \rightarrow \infty} \mathrm{~F} \quad a, b, a \frac{-}{\mathrm{b}}$.
4. Determine the nature of the point x co for Legendre's equation $-\mathrm{x}^{2} \quad \mathrm{y} \quad 2 x y+p(p+1) y-0$, where p is a constant.
5. Find the first two terms of the Legendre series of $\mathrm{f}(x)=e x$.
6. Define gamma function and show that $\mid(n+=n$! for any integer $\mathrm{n}>0$.
7.. Show that $\frac{-}{2 x}[x, 1(x)]=x \cdot 0(x)$.
7. Describe the phase portrait of the system $\frac{d . .}{d t}=1, \frac{d \wedge}{d t}=2$.
8. State Liapunov's theorem.
9. Show that a function of the form $\mathrm{ax}^{3}+b x^{2} y+c x y^{2}+d y^{3}$ cannot be either positive definite or negative definite.
10. Find the normal form of Bessel's equation $\left.x^{2} y+x y^{\prime}+{ }^{(x}-\mathrm{p}^{2}\right)$
11. State Picard's theorem.
12. Show that $f \quad$ y) $y^{1 / 2}$ satisfies a Lipschitz condition on the rectangle I x 151 and ${ }^{1} \quad \mathrm{y}<1$.
13. Find the stationary function of $00 x y^{\prime}-(\mathrm{y})^{2} \mid d x$ which is determined by the boundary conditions
$y(0)=0$ and $y(4)=3$. (14 $\times 1=14$ weightage)

Part B

Answer any seven questions.
Each question carries 2 weightage.
15. Show that $\tan x=x+\frac{1}{3} x^{3}+{ }^{3}+\ldots$ by solving $y=1+y^{2}, y(0)=0$ in two ways.
16. Find the general solution of :
$\left(1=e^{x}\right) y+\frac{1}{2} y^{\prime}+e y=0$
near the singular point $x=0$.
17. Show that the solutions of the equation $\left(1 x^{2}\right) y "-2 x y+n(n+1) y=0$, where n is a non-negative integer, bounded near $x=1$ are precisely constant multiples of the polynomial :

$$
\mathrm{F}\left[-\mathrm{n}, \mathrm{n}+1,1, \frac{1}{2}(1-x)\right] .
$$

18. If $1(x)=x^{p}$ for the interval $0 \mathrm{x}<1$, show that its Bessel series in the functions $\mathrm{J}_{p}\left(\lambda_{n} x\right)$, where the X, 's are the positive zeros of $\mathrm{J}_{p}(\infty)$ is $\quad{ }^{n}=\mathbb{E}{\overline{n=1}{ }^{2} n^{\prime}{ }^{\mathrm{J}}+1}\left(\lambda_{n}\right) \mathrm{J}_{p}\left(\lambda_{n} x\right)$.
19. Show that if $\mathrm{w}(t)$ is the Wronskian of the two solutions $(x,(t), \mathrm{y},(t))$ and $\left(\mathrm{x}_{2}(t), \mathrm{y}_{2}(t)\right)$ on $[a, b]$ of the homogeneous system $\frac{d x}{d t}=\quad(t) x+b_{1}(t) y ; \frac{d y}{d t}=a_{2}(t) x+b_{2}(t) y$, then $w(t)$ is either identically zero or nowhere zero on $[a, b]$.
20. Determine the nature and stability properties of the critical point $(\mathbf{0}, \mathbf{0})$ for the system :

$$
\overline{d t}=-4 x-y, \frac{d y}{d t}=x-2 y .
$$

21. Show that $(0,0)$ is an unstable critical point for the system $\frac{d x}{d t}=2 x y+x^{3} \frac{d y}{d t}=-x^{2}+y^{5}$
22. If $\mathrm{y}(\mathrm{x})$ is a non-trivial solution of $\mathrm{y}^{\prime \prime}+q(x) y=0$, show that $\mathrm{y}(\mathrm{x})$ has an infinite number of positive zeros if $q(x) \quad k$ for some $k>\frac{1}{4}$, and only a finite number if $q(x)^{\prime}<\begin{gathered}1 \\ 4 \times 2\end{gathered}$.
23. A curve in the first quadrant joins $(0,0)$ and $(1,0)$ and has a given area beneath it. Show that the shortest such curve is an arc of a circle.
24. Explain Picard's method of successive approximations of solving the initial value problem : $\mathrm{y}=f(x, y), y\left(x_{\mathrm{u}}\right)=y_{o}$, where $f(x, y)$ is an arbitrary function defined and continuous in some neighbourhoood of the point $\left(x_{0}\right.$, yo $)$

Part C

Answer any two questions.
Each question carries 4 weightage.
25. Find two independent Frobenins series solutions of the equation :

$$
x^{-} y+x y^{\prime}+\left(x^{2}-1 / 4\right) y=0
$$

26. State and prove the orthogonality property for $\mathrm{J}_{\mu}(x)$, the Bessel functions of order p
27. For the non-linear system :

$$
\frac{d x}{d t} \quad y\left({ }^{2}+{ }^{+}\right) \frac{d y}{d t}=2 x y .
$$

(i) Find the critical points.
(ii) Find the differential equation of the paths.
(iii) Solve this equation to find the paths.
(iv) Sketch a few of the paths.
28. Solve the initial value problem by Picard's method :

$$
\begin{array}{ll}
\frac{-t y}{l x}=z & y(0)=1 \\
d z \\
d x & =-y \\
z(0)=0 .
\end{array}
$$

