\qquad

Reg. No

\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

 (CUCSS)Mathematics
MT 10 03-REAL ANALYSIS--I
(2010 Admissions)

Time : Three Hours
Maximum : 36 Weightage

Part A (Short Answer Questions)

Answer all questions.
Each question has 1 weightage.

1. Define convex set. Give an example of a non-convex set in R_{2}.
2. For x, y e R^{1}, let $d(x, y)=|x-2 y|$. Is d a metric on R^{1} ? Justify your answer.
3. Is arbitrary intersection of closed sets closed ? Justify your answer.
4. Let E be an infinite subset of a compact set K . Prove that E has a limit point in K.
5. Let f be a real uniformly continuous function on a bounded set E in R_{1}. Prove that f is bounded on E .
6. Let f and g be differentiable functions on (a, b). Prove that $f g$ is differentiable on (a, b) and $(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$ for all $x \mathbf{E}(a, b)$.
7. Evaluate $\lim ^{\log } x$
8. Let a be an increasing function on $[\mathrm{a}, \mathrm{b}], a_{5.1} x_{\mathrm{U}} \mathrm{s} b$, a be a continuous at x_{U}, $f\left(x_{0}\right)=1$ and $f(x)=0$ if $x \quad x_{0}$. Prove that f ER (a) on $[a, b]$ and $\int_{a}^{b} f d \alpha \mathrm{O}$.
9. If $f_{1} \mathrm{ER}(\mathrm{a})$ and $1_{2} \in \mathrm{R}$ (a) on [$\left.a, b\right]$, then prove that $f_{1}+\mathrm{f}_{2} \mathrm{ER}(\mathrm{a})$ on [a, b] and $\int_{u}\left(f_{1}+I_{2}\right) d \alpha \int_{u}^{*} d \alpha+\int_{u}^{0} 12 d \alpha$.
10. Let y be a curve in the complex plane, defined on $[0,2 \pi]$ by $\mathrm{y}(t)=e^{\wedge \ldots}$. Find the length of y .
11. For $\mathrm{n}=1,2,3, \ldots$ and for real x, let $\mathrm{I}_{\mathrm{n}}(x)=\frac{\text { Shat }}{1+n x^{2}}\left\{f_{n}\right\}$ is uniformly convergent.
12. Let $\left\{f_{n}\right\}$ be a sequence of real valued differentiable functions that converges to f. Is it true that $f_{n}^{\prime} \quad f^{\prime}$? Justify your answer.
13. Define equicontinuity. Prove that functions in an equicontinuous family are continuous.
14. State Stone-Weierstrass theorem.
(14 $\times 1=14$ weightage)

Part B

Answer any seven from the following ten questions.
Each question has weightage 2.
15. Prove that every infinite subset of a countable set A is countable.
16. Let X be a set. For $p, q \in \mathrm{X}$, define :
$d\left(p,=\left\{\begin{array}{l}1 \text { if }_{0} p \neq q \\ 0 \\ \text { if } \\ \mathbf{p}\end{array}\right.\right.$

Prove that d is a metric on X . Which subsets of the resulting metric space are open.
17. Let E be a closed set of real numbers which is bounded above. If y is the least upper bound of E , then prove that yeE.
18. Let $[x]$ be the largest integer less than or equal to x . What type of discontinuities does the function [x] have?
19. Let f be a function defined on $[\mathrm{a}, \mathrm{b}]$. If f has a local maximum at a point $x \mathrm{E}(a, b)$ and if $f^{\prime}(x)$ exists, then prove that $f^{\prime}(x)=0$.
20. If f is differentiable on $[a, b]$, then prove that f^{\prime} cannot have any simple discontinuities on $[a, b]$.
21. Let f be a bounded real function on $[\mathrm{a}, \mathrm{b}]$ and a be monotonically increasing on $\left[\mathrm{a}, M\right.$. If P^{\prime} is a refinement of the partition P , then prove that :
$\mathrm{L}(\mathrm{P}, f, a) \quad \mathbf{L}\left(\mathbf{P}^{\prime}, f, \mathrm{a}\right)$.
22. Let f ER (a) on [a, b]. Prove that $|f| \mathrm{ER}$ (a) on [a, b] and $\left|\int_{a}^{c} f d \alpha\right|{ }_{a}^{2}|f| d \alpha$.
23. Prove that the series :
$\left.\sum_{n=1}^{\infty} \quad-1\right)_{n}^{n 2}{ }_{n}$
converges uniformly in every bounded interval.
24. For $\mathrm{n}=1,2, \ldots$, let $f_{n}(x)=\begin{gathered}x^{n} \\ \mathrm{x}^{2}+{ }^{(1-n x)^{2}}\end{gathered}$ Show that $\left\{f_{n}\right\}$ is uniformly bounded on $[0,1]$. Also prove that $\left\{f_{i l}\right\}$ is not equicontinuous on $[\mathbf{0}, \mathbf{1}]$.
($7 \times 2=14$ weightage $)$

Part C

Answer any two from the following four questions.
Each question has weightage 4.
25. (a) Prove that a set E is open if only if its complement is closed.
(b) Prove that compact subsets of a metric space are closed.
26. State and prove Taylor's theorem.
27. (a) Let f be a bounded function on $[\mathrm{a}, M$. Prove that $f \mathbf{E R}(\mathrm{a})$ if and only if for every $\mathrm{E}>0$ there exists a partition P of $[\mathrm{a}, b]$ such that :
$\mathrm{U}(\mathrm{P}, f, \mathrm{a})-\mathbf{L}(\mathbf{P}, f, \mathrm{a})<$.
(b) Let f be a bounded function and a be a monotonic increasing function on $[a, b]$. If $\mathrm{f}_{1}, \mathrm{f}_{2}$ are Riemann-Stieltjes integrable with respect to a on [a, b], then prove that $f_{1}+h_{2}$ is RiemannStieltjes integrable with respect to a on $[a, b]$.
28. Let $\left\{f_{n}\right\}$ be a sequence of continuous functions on a set E such that $f_{n} \mathcal{F}$ uniformly on E. Prove that f is continuous on E .

