FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016 (CUCSS)
Mathematics

MT 1C 04—NUMBER THEORY
 (2016 Admissions)

Time : Three Hours
Maximum : 36 Weightage

> Part A
> Answer all questions.
> Each question carries a weightage of 1.

1. Define the Mobius function $\mu(\mathrm{n})$ and the Euler totient function $+(\mathrm{n})$.
2. If \mathbf{f} is multiplicative, prove that $f(1)=1$.
3. If f and g are arithmetical functions, prove that:
$\left(f^{*}\right)^{\prime}=f^{*=+} f^{*} g^{\prime}$
where f ' denotes the derivative off.
4. Prove that $[24-2[x]$ is either 0 or 1 .
5. For $\times Z 1$, prove that
6. State Abel's identity.
7. For $x \quad 2$, prove that $\pi(x)=\frac{(x)}{\log x}+\frac{9^{(t)}}{2 \log t} d t$.
8. If $a>0$ and $b>0$, then show that

$$
\lim _{\rightarrow \infty} \frac{\pi^{(\pi x)}}{\pi(b x)^{-}}-b
$$

9. Prove that $\lim \left(\begin{array}{c}M(x) \\ x\end{array} \frac{H(x)}{\operatorname{lng} x}=0\right.$
10. If p is an odd prime, prove that $\sum_{\mathbf{r}=\mathbf{1}}(r / p)=0$.
11. Evaluate the Legendre symbol $(3 / 383)$.
12. If P is an odd positive integer, prove that $(-1 / \mathrm{F})=(-1)^{(p}$
13. Prove that the product of two shift enciphering transformations is also a shift enciphering transformation.
14. Fine the inverse of the matrix ${\underset{4}{1} 33)}^{1} \bmod 5$.
(14 $\times 1=14$ weightage)
Part B
Answer any seven questions.
Each question carries a weightage of 2 .
15. Let f be multiplicative. Prove that f is completely multiplicative if and only if :
$f \quad(\mathrm{n})=\mu(\mathrm{n}) f(\mathrm{n})$ for all n 1.
16. Prove that $\prod_{t n} t \Rightarrow$ " where $d(n)$ denotes the number of positive divisors of n.

17. State and prove Legendre's identilty.
18. Prove that the following two relations are equivalent.
(a) $\pi(x)=\underset{\log x}{\underline{\mathrm{x}}}-\mathrm{O}\left(\frac{x_{-}}{\log ^{x}}\right)$.
(b) $\vartheta(x)=x+O\left(\begin{array}{c}\frac{x}{\log _{n}}\end{array}\right)$.
19. If $\{a(\mathrm{n})\}$ is a non-negative sequence such that:
$\underset{n \leq x}{\mathrm{E}} a(n)\left[\frac{\pi}{\mathrm{n}}=x \log \mathbf{x}+\mathbf{O}(\mathbf{x})\right.$ for all $\mathrm{x}_{-} 1$, then prove that there is a constant $\mathrm{A}>0$ and an $x_{\mathrm{u}}>0$ such that $\sum_{n \leq n} a(n)$ Ax for all $x \quad x_{\mathrm{u}}$.
20. If $\mathrm{A}(x)=\underset{n \leq x}{ } \mathrm{n}$, then prove that the relation $\mathrm{A}(x)=0(1)$ as $\mathrm{x} \rightarrow \infty$ implies the prime number theorem.
21. Prove that the Legendre's symbol (nip) is a completely multiplicative function of n.
22. Explain briefly about digraph transformations.
23. How will you authenticate a message in public key cryptosystem.

$$
(7 \times 2=14 \text { weightage })
$$

Part C

Answer any two questions. Each question carries a weightage of 4 .
25. Prove that the set of all arithmetical functions f with $f(1) \neq 0$ forms an abelian group under Dirichlet product.
26. For $\mathrm{n} \geq 1$ prove that the nth prime p_{n} satisfies the inequalities
$\stackrel{-}{-} n \log c<p_{\text {.. }}<12\left(n \log n+n \log \frac{12}{e}\right)$.
27. Determine those odd primes p for which 3 is a quadratic residue $\bmod p$ and those for which it is a non-residue.
28. Suppose that the following 40-letter alphabet is used for all plaintexts and cipher texts : A-Z with numerical equivalents $0-25$, blank $=26,=27, ?=28, \$=29$, the numerals $0-9$ with numerical equivalents $30-39$. Suppose that plaintext message units are digraphs and cipher text message units are trigraphs.
(ie, $k=2,1=3,40^{2}<n_{\mathrm{A}}<40^{3}$ for all n_{A}).
(a) Send the message "SEND $\$ 7500$ " to a user whose enciphering key is $\left(\mathrm{C}_{\mathrm{A}}, \boldsymbol{e}_{\mathrm{A}}\right)=(2047$, 179).
(b) Break the code by factoring n_{A} and then compute the deciphering key $\left(\mathrm{B}_{\mathrm{A}}, d_{\mathrm{A}}\right)$.

