D 13191

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

 (CUCSS)Mathematics

MT 1C 05—DISCRETE MATHEMATICS
(2016 Admissions)
Time : Three Hours

Part A (Short Answer Questions)
Answer all questions.
Each question has weightage 1.

1. Compute $|\mathbf{E}(\mathrm{G})|+\mid \mathrm{E}\left(\mathrm{G}^{\mathrm{C}} \mid\right.$ for a graph on n vertices.
2. If a simple graph G is not connected, prove that GC is connected.
3. Define identity graph. Illustrate with an example.
4. Define connectivity and edge connectivity. Give an example.
5. If $e=x y$ is not a cut edge of the graph G , prove that e belongs to a cycle of G .
6. Show that $6(\mathrm{G}) 5$, if G is a simple planar graph.
7. Give an example of a poset with no maximum element and with exactly one maximal element.
8. Prove or disprove. The union of two chains in a poset is a chain.
9. Define a strict partial order. If P is a partial order on the set X , show that $\mathrm{P}-\{(\mathrm{x}, x): x \mathbf{E} \mathbf{X}\}$ is a strict partial order.
10. Define a Boolean function of n variables. Give an example of a Boolean function of 3 variables.
11. Let $\mathrm{E}=\{a, b, c\}$ and $\mathrm{L}=\{a, b\}$. Find $\mathrm{L}+$ and L^{2}.
12. Design a dfa which accepts string 1100 only.
13. If $\mathrm{E}\{0,1\}$, design an $n f a$ to accept set of strings ending with two consecutive zeros.
14. Find an $n f a$ which accepts the set of all strings containing $a a b b$ as a substring.
$(14 \times 1=14$ weightage $)$

Turn over

Part B

Answer any seven questions from the following ten questions. Each question has weightage 2.
15. If every vertex of a graph G has atleast degree 2 , prove that G contains a cycle.
16. Prove that every edge of a tree is a cut edge.
17. Prove that every connected graph contains a spanning tree.
18. If G is a plane graph and f is a face of G prove that there exists a plane embedding of G in which f is the exterior face.
19. Prove that \mathbf{K}_{5} is non-planar.
20. Define total order. Give an example of a partial order which is not a total order.
21. Let $(X,+, \cdot$,$) be a Boolean algebra. Prove that x+1=1$ and $x \cdot 0=0$.
22. Prepare the table for values of the function $f\left(x_{i}, \mathrm{x} 2\right)=x_{1} x_{2}+x_{1} x_{2}^{\prime}+$
23. Design an $n f a$ with three states that accepts the language $\mathrm{L}=\{a b, a b c\}^{*}$.
24. Find a $d f a$ for the language $\mathrm{L}=\mathrm{a}^{\prime \prime}: \mathrm{n}$ is odd, $\left.\mathrm{n} \neq 3\right\}$.

Part C (Essay Type)

Answer any two questions from the following four questions.
Each question has weightage 4.
25. For any loopless connected graph G, prove that $x(G) X(G)$ s $8(G)$.
26. Prove that a graph is planar if and only if each of its blocks is planar.
27. Let ($\mathrm{X},+,,^{\prime}$) be a Boolean algebra. If $x, y \mathbf{E X}$ define $x s y$ if $x \cdot y^{\prime}=0$. Prove that (X, \quad is a lattice. Find the maximum and minimum elements of this lattice.
28. Convert the $n f a$ given by the transition graph into an equivalent $d f a$:

