C 4668

(Pages : 3)

Name.....

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

Mathematics

MT 2C 06—ALGEBRA II

(2010 Admissions)

Time : Three Hours

Maximum: 36 Weightage

Part A

Answer **all** questions. Each question carries *weightage* 1.

- 1. Is the ring z x z an integral domain. Justify your answer
- 2. Let p(x) be an irreducible polynomial of degree > 1 in F[x] and let $I = \langle p(x) \rangle$. Show that $a + I \neq b + I$ for $a \neq b$ in F.
- 3. Show that Q) is an algebraic extension of Q_*
- 4, Find the degree [Q(a):Q] where a = +
- 5. Find the degree of c over R where c is the field of complex numbers and \mathbb{R} is the field of reals.
- 6. Let a be a real number such that [Q(a): Q] = 4. Is a constructible. Justify your answer.
- **7.** Let a be a zero of $x^2 + x + 1 \in \mathbb{Z}_2[x]$ and let $F = Z_2$ (a). List all the elements of F.
- 8. Let $a: Q(\sqrt{2}) \to Q$ (5) be defined by a (a + b) b + a f where $a, b \in Q$. verify whether a is an automorphism of $Q(\sqrt{2})$.
- 9. Let E be the splitting field of $x^3 1$ over Q. Find [E:Q
- **10.** Find the index $\{Q(a): Q\}$ where a =
- 11. List the elements of the Galois group G (Q (1 + i) / Q).

Turn over

- 12. Verify whether $(y_1 1)(y_2 1)(y_3 1)$ is a symmetric function in y_1, y_2, y_3 .
- 13. Describe the third cyclotomic, polynomial Φ_{3} (x) over Q.
- 14. Verify whether $x^5 2$ is solvable by radicals over Q.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carris weightage 2.

- 15. Let N be an ideal in a commutative ring R and let $a \in R$. Show that $I = \{ra + n : r \in R, n \in N\}$ is an ideal of R containing N.
- 16. Let E be an extension of a field F and a E E. Let p(x) be an irreducible polynomial in $\mathbf{F}[x]$ such that $p(\alpha) = 0$. Show that if $f(x) \in \mathbf{F}[x]$ is such that $f(\alpha) = 0$ then $p(x) \mathbf{I} f(x)$.
- 17. Let E be an extension of a field F, $a \in E$ and let $: F[x] \in E$ be the evaluation homomorphism. Show that *a* is transcendental over F if and only if ϕ_{α} is one-to-one.
- 18. Let E be an extension of a field F and let $K = \{a \in E : a \text{ is algebraic over } F\}$. Show that K is a subfield of E.
- 19. Show that every finite extension of a finite field is a simple extension.
- 20. Let E be an extension of a field F and a E E be algebraic over F. Let *a* be an **automorphism** of E leaving F fixed. Show that a (a) is a zero of *irr* (a; F).
- 21. Let K be the splitting field of $x^3 2$ over Q. Find $[K:\mathbb{Q}]$.
- 22. Describe all elements of the Galois group G (K/ $_Q$) where K is the splitting field of $x^3 + 2$ over Q.
- 23. Let **H** be a subgroup of a Galois group G(K/F). Show that $K_H = \{a \in K : a (a) = a \text{ for all } a \in HI \text{ is a subfield of } K.$
- 24. Show that a regular 7-gon is not constructible by straight edge and compass.

 $(7 \ge 2 = 14 \text{ weightage})$

Part C

• Answer any two questions. Each question carries weightage 4.

- 25. Let F be a field. Show that every ideal in $\mathbf{F}[x]$ is a principal ideal. Let p(x) be irreducible in $\mathbf{F}[x]$. Show that $\langle p(x) \rangle$ is a maximal ideal in $\mathbf{F}[x]$, Verify whether $x^3 + x^2 2$ is irreducible in Z3 [x].
- 26. Define algebraically closed field. Show that a field F is algebraically closed if and only if every non constant polynomial in $\mathbf{F}[x]$ factors into linear factors in $\mathbf{F}[x]$.
- 27. Define splitting field. Let E, F be fields such that $F < E < F_{..}$ Show that E is a splitting field over F if and only if every isomorphism from E into F leaving \overline{F} fixed maps E onto E.
- 28. Describe the 8th cyclotomic polynomial $\Phi_8(x)$ over Q. Show that $\Phi_8(x) = x^4 + 1$. Describe the. Galois group of $\Phi(x)$ over Q.

 $(2 \times 4 = 8 \text{ weightage})$