\qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

 (CUCSS)
Mathematics

MT 2C 06-ALGEBRA II
 (2010 Admissions)

Time : Three Hours
Maximum : 36 Weightage

Part A

Answer all questions.
Each question carries weightage 1.

1. Is the ring $z \times z$ an integral domain. Justify your answer
2. Let $p(x)$ be an irreducible polynomial of degree >1 in $\mathbf{F}[x]$ and let $\mathbf{I}=\langle p(x)\rangle$. Show that $a+\mathrm{I} \neq b+\mathrm{I}$ for $a \neq b$ in F.
3. Show that $\mathrm{Q} \quad$) is an algebraic extension of Q .

4, Find the degree $[Q(a): Q]$ where $a=+$
5. Find the degree of \mathbf{c} over \mathbf{R} where \mathbf{c} is the field of complex numbers and \mathbb{R} is the field of reals.
6. Let a be a real number such that $[Q(a): \mathbb{Q}]=4$. Is a constructible. Justify your answer.
7. Let a be a zero of $x^{2}+x+1$ e $\mathbb{Z}_{2}[x]$ and let $F=Z 2$ (a). List all the elements of F.
8. Let $\mathrm{a}: \mathrm{Q}(\sqrt{2}) \rightarrow \mathrm{Q}(5)$ be defined by $\mathbf{a}(\mathbf{a}+\boldsymbol{b} \quad b+a f$ where $a, b \in \mathrm{Q}$. verify whether a is an automorphism of $Q(\sqrt{2})$.
9. Let E be the splitting field of $x^{3}-1$ over Q. Find $[E: Q$
10. Find the index $\{Q(a): Q\}$ where $a=$
11. List the elements of the Galois group $\mathrm{G}(\mathrm{Q}(1+i) / \mathrm{Q})$.
12. Verify whether $\left(\mathrm{y}_{1}-1\right)\left(\mathrm{y}_{2}-1\right)\left(\mathrm{y}_{3}-1\right)$ is a symmetric function in $y_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}$.
13. Describe the third cyclotomic, polynomial $\Phi_{3}(x)$ over Q.
14. Verify whether $x^{5}-2$ is solvable by radicals over Q.
(14 x $1=14$ weightage)

Part B

Answer any seven questions.
Each question carris weightage 2.
15. Let N be an ideal in a commutative ring R and let $a \in R$. Show that $I=\{r a+n: r e R, n e N\}$ is an ideal of R containing N .
16. Let E be an extension of a field F and a E E. Let $p(x)$ be an irreducible polynomial in $\mathrm{F}[x]$ such that $p(a)=0$. Show that if $f(x) \in \mathrm{F}[x]$ is such that $f(a)=0$ then $p(x) \mathrm{I} f(x)$.
17. Let E be an extension of a field $\mathrm{F}, \mathrm{a}_{\mathrm{E}} \mathrm{E}$ and let $: \mathrm{F}[\mathrm{x}] \mathrm{E}$ be the evaluation homomorphism. Show that a is transcendental over F if and only if ϕ_{U} is one-to-one.
18. Let E be an extension of a field F and let $\mathrm{K}=\{\mathrm{a} \in \mathrm{E}: \mathrm{a}$ is algebraic over F$\}$. Show that K is a subfield of E .
19. Show that every finite extension of a finite field is a simple extension.
20. Let E be an extension of a field F and a E E be algebraic over F . Let
a be an automorphism of E leaving F fixed. Show that a (a) is a zero of $\operatorname{irr}(\mathrm{a} ; \mathrm{F})$.
21. Let K be the splitting field of $x^{3}-2$ over Q. Find $[K: \mathbb{Q}]$.
22. Describe all elements of the Galois group $G(K / Q)$ where K is the splitting field of $x^{3}+2$ over Q.
23. Let \mathbf{H} be a subgroup of a Galois group $G(K / F)$. Show that $K_{H}=\left\{\begin{array}{c} \\ E\end{array} \mathrm{~K}\right.$: a $(\mathrm{a})=\mathrm{a}$ for all a e $\mathbf{H I}$ is a subfield of K.
24. Show that a regular 7-gon is not constructible by straight edge and compass.

Part C

> - Answer any two questions.
> Each question carries weightage 4.
25. Let F be a field. Show that every ideal in $\mathrm{F}[x]$ is a principal ideal. Let $p(x)$ be irreducible in $\mathrm{F}[x]$. Show that $\langle p(x)\rangle$ is a maximal ideal in $\mathrm{F}[x]$, Verify whether $\mathrm{x}^{3}+\mathrm{x}^{2} 2$ is irreducible in $\mathrm{Z} 3[\mathrm{x}]$.
26. Define algebraically closed field. Show that a field F is algebraically closed if and only if every non constant polynomial in $\mathrm{F}[x]$ factors into linear factors in $\mathrm{F}[x]$.
27. Define splitting field. Let E, F be fields such that $\mathrm{F}<\mathrm{E}<\mathrm{F}$. . Show that E is a splitting field over F if and only if every isomorphism from E into F leaving \bar{F} fixed maps E onto E.
28. Describe the 8 th cyclotomic polynomial $\Phi_{\gamma}(x)$ over Q.. Show that $\Phi_{\gamma}(x)=x^{4}+1$. Describe the. Galois group of $\Phi(x)$ over Q .

