\qquad
\qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

Mathematics
MT 2C 07-REAL ANALYSIS—II
(2010 Admissions)

Time : Three Hours
Maximum : 36 Weightage

Part A

Short answer questions 1-14.
Answer all questions.
Each question has 1 weightage.

1. Prove that a linear operator A on a finite dimensional vector space is one-one if and only if the range of A is X .
2. Let 0 be the set of all linear operators on \mathbf{i}. Let $A E f t$ and $B E L\left(\mathbb{R}^{n}\right)$ with $B-A .11 A^{1} I I<1$. Prove that B E 11
3. Define gradient of a real valued differentiable function $f_{\text {with }}$ domain E , at x a E . Also define the directional derivative of f at x. Illustrate with an example.
4. Prove that the determinant of the matrix of a linear operator on \mathbb{R}^{n} does not depend on the basis
which is used to construct the matrix.
5. If $m^{*}(A)=0$, prove that $m^{*}(\mathrm{~A} \cup \mathrm{~B}) m^{*}(\mathrm{~B})$.
6. Define Lebesgue measurable sets. Prove that finite sets are measurable.
7. Define measurable functions. Let f be a measurable function and E be a measurable subset of the domain off Prove that f / E is measurable.
8. Define Lebesgue ${ }_{\text {integral }}$ of a bounded measurable function. If A and 13 are disjoint measurable sets of finite measure prove that $S A, . f^{=} I A f^{+} 5$.
9. If f and g are bounded measurable functions defined on a set of finite measure, prove that $\int(\mathrm{f} 4-\mathrm{g})=\mathbf{E}^{+} \int_{\mathrm{E}} g$.
10. If f is integrable over a measurable set E , prove that $\mathrm{I} f I$ is integrable over E .
11. Give an example of a sequence $\left\{f_{n}\right\}$ that converges in measure but such that $\left\{f_{n}(x)\right\}$ does not converge for any x.
12. Prove that a function f is of bounded variation on $[a, b]$ if and only if f is the difference of two monotone real valued functions on $[a, b]$.
13. Let f be defined by $f(x)=\begin{aligned} & 0 \text { if } \mathrm{x}=0 \\ & x \sin \frac{1}{x} \text { if } x \quad 0^{\circ}\end{aligned}$. Find $\mathrm{D}^{+} f(0)$ and $\mathrm{D}_{+} f(O)$.
14. If f is absolutely continuous prove that f has a derivative almost everywhere.
($14 \times 1=14$ weightage)

Part B

Answer any seven questions from the following ten questions (15-24).
Each question has weightage 2,
Let X be an n-dimensional vector space. Prove that every basis of X has n vectors.
15.
16. If O is a contraction of a metric space X, prove that O has a unique fixed point.
17. Let S be a metric space. Let $a_{, \ldots}, a_{12}, \Longrightarrow, a_{m n}$ are real continuous functions on S . If for each $p E \mathrm{~S}, \mathrm{~A}_{\mathbf{p}}$ is the linear transformation from into le whose matrix has entries $a_{u}(p)$, prOve that the mapping $p \mapsto \mathrm{~A}_{p}$ is a continuous mapping of S into $\mathrm{L}\left(\mathbb{R}^{n}\right.$,
18. Prove that every borel set is measurable.
19. Let $\left\{E_{\text {.. }}\right\}$ be an infinite sequence of measurable sets with E^{n+}, $E_{n 1}$ for each n. Prove that $m\left(\bigcap_{n=1}^{\infty}=\lim _{n \rightarrow \infty} m\left(\mathrm{E}_{n}\right)\right.$.
20. Let $\left(f_{n}\right\}$ be a sequence of measurable functions with the same domain of definition. Prove that $\lim f_{n}$ and $\lim f_{n}$ are measurable.
21. Let f be a non-negative integrable function. Prove that F defined by $\mathrm{F}(x){\underset{\mathrm{f}}{\mathrm{J}-\infty}}_{x}^{\mathrm{x}} f$ is continuous.
22. State and prove the Lebesgue convergence theorem.
23. Let $\left\{f_{n},\right\}$ be a sequence of measurable functions that converge in measure to f. Prove that there is a subsequence $\left\{f_{n k}\right\}$ that converges to f almost everywhere.
24. Show that $\mathrm{T}_{a}^{b}(c f)=1 c \mathrm{C} \quad(f)$ and $\left.\mathrm{T}_{a}^{b} \quad+g\right)=\mathrm{T}_{a}^{b}(f)+\mathrm{T}_{a}^{b}(\mathrm{~g})$.

$$
(7 \times 2=14 \text { weightage })
$$

Part C

Answer any two questions from the following four questions (25-28).
Each question has weightage 4.
25. Let f be $\mathrm{a} _$mapping of an open set E c r into W . Let $f(x)$ is invertible fór each x E . Prove that $f(W)$ is an open subset of $\mathrm{R}^{\prime \prime}$ for every open set W c E .
26. Prove that the Lebesgue outer measure of an interval is its length.
27. Prove the Monotone convergence theorem.
28. Let f be an integrable function on $[\mathrm{a}, \mathrm{b}]$ and $\mathrm{F}(x)=\mathrm{F}(a)+J o f(t) d t$. Prove that $\mathrm{F}^{\prime}(x)=f(x)$ for almost all $\mathrm{xe}[a, b]$.

$$
\text { (} 2 \times 4=8 \text { weightage) }
$$

