C 4671

(Pages: 3)
Name
Reg. No.

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

Mathematics

MT 2C 09-P.D.E. INTEGRAL EQUATIONS
 (2010 Admissions)

Time : Three Hours
Maximum : 36 Weightage

Part A

Answer all questions.
Each question has 1 weightage.

1. Determine a partial differential equation of first order satisfied by the surface $F(u, v)=0$, where $\mathrm{u}=\mathrm{u}(x, y, z)$ and $\mathrm{v}=\mathrm{v}(x, y, z)$ are known functions of $. x, y$ and z and F is an arbitrary function of u and v.
2. Show that $z=a x+(y / a)+b$ is a complete integral of $p q=1$.
3. Determine the domain in which the two equations $x p-y q-x=0, x^{\wedge} p+q-x y=0$ are compatible.
4. Find the complete integral of $p+q-p q=0$.
5. Determine the characteristic curves of the equation $x z_{y}-y z_{x}=z$.
6. What are the 'domain of dependence' and the 'range of influence' ?
7. Show that the solution to the Dirichlet problem is stable.
8. State the Cauchy problem for the equation

$$
\mathrm{Au} .+\mathrm{B} u_{x y}+\mathrm{C} u_{y y}=\mathbf{F}\left(x, \mathrm{y}, \mathrm{u}, u_{x}, u_{y}\right)
$$

where A, B and C are functions of x and y and give an example.
9. State Heat conduction problem.
10. Determine a suitable Green's function to find the solution of the Dirichlet problem for the upper half plane.
11. Define Voltera equation of second kind and give an example.
12. Determine $p(x)$ and $q(x)$ in such a way that the equation $\mathrm{x}^{2} \frac{d^{2} v}{d x^{2}} \quad 2 \mathrm{x}{ }^{-\eta_{1}} d x+2 y=0$ is equivalent to the equation $\frac{\mathrm{d}}{d x}\left(p_{d x}^{d}+y y=0\right.$
13. Show that the characteristic functions of the Fredholm equation $y(x)=\mathbf{j} K(x, \zeta) y \quad d(\zeta)$ corresponding to distinct characteristic numbers are orthogonal over the interval (a, b).
14. Determine the iterated kernel $\mathrm{K}_{2}(\mathrm{x}, \zeta)$ associated with $\mathrm{K}(x$,

(14 x $1=14$ weightage)

Part B

Answer any seven questions. Each question has 2 weightage.
15. Find the general integral of $(y+1) p+(x+1) q=z$.
16. Show that the Pfaffian equation $y z d x+(x-y-z x) d y+\left(x^{-} z-x y\right) d z=0$ is integrable and find the corresponding integral.
17. Find the complete integral of $z^{2}=p q x y$.
18. Solve the Cauchy problem for $2 z_{\alpha}+y z_{y}=z$, when the initial data curve is $\mathrm{C}: x_{6}=s, \mathrm{y}_{\mathrm{o}}=\mathrm{s}^{2}, z_{\mathrm{v}}=s$, $1<s<2$.
19. Reduce the equation $x^{2} u_{x x}-y^{2} u_{y y}=0$ into its canonical form.
20. Obtain the D^{\prime} Alemberts solution which describes the vibrations of an infinite string.
21. Solve the Neumann problem for a circle.
22. Transform the problem $\begin{aligned} & \frac{d^{2}}{\underline{\underline{y}} .}+=x, y(0)=1, \mathrm{y}^{\prime}(1)=0 \text { to a Fredholm integral equation. } \\ & d x^{2}\end{aligned}$
23. Show that the characteristic values of λ for the equation $y(x)=\mathbf{x} \mathbf{f} \sin (x+\zeta) y(\zeta) d \zeta$ are

$$
=\frac{1}{\pi} \text { and } X_{2}=-1 \text { with corresponding characteristic function of the form } y_{1}(x)=\sin x+\cos x
$$ and $\mathrm{y}_{2}(\mathrm{x})=\sin \mathrm{x}-\cos x$.

24. Solve the equation by iterative method $\mathrm{y}(\boldsymbol{x})=\underset{0}{\mathbf{X}}(\mathbf{x}+\mathrm{y}(\zeta) d \zeta+1$.
($7 \times 2=14$ weightage $)$

Part C

Answer any two questions. Each question has 4 weightage.
25. Using the method of characteristics, find an integral surface of $p^{\prime} x+q y-z=0$ containing the initial line $\mathrm{y}=1, x+z=0$.
26. (a) Solve :

$$
\begin{array}{ll}
y_{t t} c y_{x x} & 0<\mathrm{x}<1, t>0 \\
\mathrm{y}(0, t)=\mathrm{y}(1, t)=0 \\
\mathrm{y}(x, 0)=\mathrm{x}(1-x), & \mathrm{O} \times 1 \\
y_{\tau}(x, 0)=0, & 0<x<1
\end{array}
$$

(b) Show that the solution of the problem in part (a) is unique.
27. Show that the solution for the Dirichlet problem for a circle of radius a is given by the Poisson integral formula.
28. Show that any solution of the integral equation $\mathrm{y}(x)=X \mathbf{f}(\mathbf{1}-3 x \zeta) \mathrm{y}(\zeta) d \zeta+\mathrm{F}(x)$ can be expressed as the sum of $\mathrm{F}(\mathbf{x})$ and some linear combination of the characteristic functions.

$$
\text { (} 2 \times 4=8 \text { weightage) }
$$

