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10.

11.

Part A

Answer all questions.
Each question has 1 weightage.

Determine a partial differential equation of first order satisfied by the surface F (u, V)= g, where
U=u(xy,z)and Vv =v(x, Y, z) are known functions of x, y and z and F is an arbitrary function of

uandyv.
Show thatz = ax + @/g) + b is a complete integral of pq = 1.
Determine the domain in which the two equations xp —yq —x =0, xp + q —xy = 0 are compatible.
Find the complete integral of p + q — pg = 0.
Determine the characteristic curves of the equation xz —yz, =2Z.
What are the 'domain of dependence' and the 'range of influence' ?
Show that the solution to the Dirichlet problem is stable.
State the Cauchy problem for the equation

Au.+Bu, +Cu =F(xy,u,u, u),
where A, B and C are functions of x and y and give an example.
State Heat conduction problem.

Determine a suitable Green's function to find the solution of the Dirichlet problem for the upper

half plane.

Define Voltera equation of second kind and give an example.

Turn over
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Determine p (x) andq (X) in such a way that the equation . —5 2X 42y =0is equivalent to
dx dx

the equation © ( ’ o
dx\Pax "0

Show that the characteristic functions of the Fredholm equation y (x) = j K (x, 0y d©
a

corresponding to distinct characteristic numbers are orthogonal over the interval (a, b)
Determine the iterated kernel K, (x, ¢) associated with K (x, lin (0, 1).

(14 X 1 = 14 weightage)
Part B

Answer any seven questions.
Each question has 2 weightage.

15. Find the general integral of (y + 1) p + (x + 1)g =z
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22.

Show that the Pfaffian equation yz dx + (x"y — zx) dy + ("2 —xy) dz = 0 is integrable and find the

corresponding integral.
Find the complete integral of z2 = pq xy.

Solve the Cauchy problem for 2 = i ;
yp z,*yz, =2, when the initial data curve is C :xg = 5,y, = s2, z,=s,

1<s<2.

. Reduce the equation x u_, _ynu” =0 into its canonical form.

Obtain the D" Alemberts gojution which describes the vibrations of an infinite string.

Solve the Neumann problem for a circle.

Transform the problem =3’ :
ransform the probiem i’ + =X Y(0)=1,¥(1)=0 to a Fredholm integral equation.
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Show that the characteristic values of j for the equation y (X) =X f sin(x+0)y©de are
1
” 1
=Aand X, =— . . . .
7 2 with corresponding characteristic function of the formy (X) = sin X + cos X

and y, (X) = sin X — cos X.
Solve the equation by iterative method y (x) = X (X + y(£)dC + 1.
0

(7 X 2 = 14 weightage)
Part C

Answer any two questions.
Each question has 4 weightage.

Using the method of characteristics, find an integral surface ofp % + gy —Z = 0 containing the

initial liney =1,x +z = 0.
(a) Solve :
Y Cny,x O<x<1,t>0 4
y@0.t) =y(1,t=0
yX,0) =x(1-x), O x 1
¥, (X, 0)=0, 0<x <1
(b) Show that the solution of the problem in part (a) is unique.

Show that the solution for the Dirichlet problem for a circle of radius a is given by the Poisson

integral formula.

Show that any solution of the integral equation y (x) =X f (1-8x0)y©dC+F (X) can be expressed

as the sum of F (x) and some linear combination of the characteristic functions.

(2 x 4 = 8 weightage)
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