\qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

 (CUCSS)Mathematics

MT 2C 10—NUMBER THEORY

(2010 Admissions)

Time : Three Hours

Maximum : 36 Weightage

Part A

Answer all questions.
Each question has weightage of 1.

1. If n 1 , prove that $\sum_{\text {din }}$ (d) n .
2. Define Dirichlet product of two arithmetical functions. If f is an arithmetical function, find I such that $f * \mathrm{I}=\mathrm{I} * f=f$
3. Define a multiplicative function. If f is multiplicative, prove that f^{-1} is multiplicative.
4. If f and g are arithmetical functions, prove that $(f * g)^{\prime}=f^{\prime} * g+f * g^{\prime}$.
5. With usual notations, prove that $A * u=u^{\prime}$ and hence derive the Selberg identity.
6. Prove that $[2 \mathrm{x}]+[2 \mathrm{y}][\mathrm{x}]+(\mathrm{y}]+[x+y]$.
7. Let $f(x)=x^{2}+x+41$. Find the smallest integer for which $f(x)$ is composite.
8. Solve the congruence $5 x \equiv 3(\bmod 24)$.
9. Find the quadratic residues and non-residues modulo 11.
10. State and prove Little Fermat's theorem.
11. Determine whether - 104 is a quadratic residue or quadratic non-residue of 997 .
12. Define an affine crypto-system. Illustrate with an example.
13. Prove that product of two linear enciphering transformation is a linear enciphering transformation.
14. Describe how a signature is sent in RSA.
(14×1=14 weightage)

Part B

Answer any seven questions. Each question has weightage 2.
15. If n 1 , prove that $\mathrm{A}(\mathrm{n})=_{d / n}$ (d) $\log \left(\frac{n}{d}\right)-_{d / n}$ (d) $\log d$.
16. Let f be a multiplicative function. Show that f is completely multiplicative if and only if $f^{-1}(\mathrm{n})=(\mathrm{n}) \quad(\mathrm{n})$ for n 1.
17. State and prove the Euler's summation formula.
18. If a and b are positive real numbers such that $a b=x$ and land g are arithmetical functions with $\mathrm{F}(\mathrm{x})=\mathrm{E}_{n \leq x} f(\mathrm{n})$ and $\mathrm{G}(x) \sum_{n \cdot x} g(n)$, prove that

$$
f(d) g(q)=\mathbb{E}_{n \leq a} f(n) \mathrm{G}+\mathrm{E} g(n) \mathrm{F} \quad \mathrm{~F}(\mathrm{a}) \mathrm{G}(b)
$$

19. With usual notations, prove that, for $\mathrm{x}>0, \frac{(\log \mathrm{x})^{2}}{2 \sqrt{ } x \log 2} \psi(x)-\vartheta(x)$
20. For any prime p, prove that $\sum_{k=1}^{(p-1)!} \mathrm{o}\left(\bmod \mathrm{p}^{2}\right)$
21. Prove that the Legendre's symbol (n I p) is a completely multiplicative function of n.
22. If p and q are distinct odd primes, prove that $(p q)(q p)=(-1)^{(p-1)(q-} \frac{1}{4}-$
23. In the 27- letter alphabet with 'blank $=26^{\prime}, \mathbf{A}=\left(\begin{array}{ll}2 & n \\ 7 & 8\end{array}\right) \in \mathbf{M} \mathbf{2}(\mathbf{Z} / \mathbf{2 6} \mathbf{Z})$, to encipher the message unit "NO" assuming each plaintext message unit $\mathrm{P}=\binom{-\mathrm{y}$ is transformed into $\mathrm{C}=\mathrm{I}_{\mathrm{y}}^{\mathrm{x}}{ }^{\prime}}{\mathrm{y}}$, by the rule $\mathrm{C}=\mathrm{A} P$.
24. Solve the congruences :

$$
\begin{array}{r}
x+4 y 0(\bmod 9) \\
5 x+8 y \text { O }(\bmod 9)
\end{array}
$$

Part C

Answer any two questions.
Each question has weightage of 4 .
25. Show that $\frac{1}{6 \log n}<-(\mathbf{n})<\frac{6 n}{\log n}$, for every integer $n \quad 2$.
26. With usual notations, prove that there is a constant A such that

$$
E\left(\begin{array}{c}
- \\
- \\
\boldsymbol{P}
\end{array}\right)=\log _{\mathbf{g}}\left(\log _{\mathrm{g}} \mathrm{x}\right)+\mathrm{A}+0\left(\frac{1}{\log x}\right) \text { for all } x>2 .
$$

27. (a) Find all odd primes for which 3 is a quadratic residue.
(b) Find all odd primes for which 2 is a quadratic non-residue.
28. Describe algorithm for finding the discrete logs in the finite fields.
