\qquad
\qquad

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

 (CUCSS)Mathematics
MT 3C 11-COMPLEX ANALYSIS

Time : Three Hours
Maximum : 36 Weightage

Part A

Answer all questions.
Each question carries 1 weightage.

1. Prove that an analytic function in a region f 2 whose derivative vanishes identically must reduce to a constant.
2. Find the linear transformation which carries $0, i,-i$ into $1,-1,0$.
3. Find the fixed points of the linear transformation $w=\begin{gathered}2 z \\ 3 z-1\end{gathered}$
4. Describe the Riemann surface associated with the function $\mathrm{w}=z^{n}$, where $\mathrm{n}>1$ is an integer.
5. Compute $\int x d z$ where γ is the directed line segment from 0 to $1+i$.
6. If the piecewise differentiable closed curve y does not pass through the point a, then prove that

7. Compute $\frac{\int}{|z|=1^{2}} d z$
8. Show that e^{z} have essential singularity at co.
9. Find the poles and residues of $\underset{z}{2} \frac{1}{+52+6}$
10. If $p(z)$ is a non-constant polynomial, prove that there is a complex number a with $p(a)=0$.
11. Define Harmonic function.
12. State Mean Value property.
13. Obtain the Taylor series which represents the function $\begin{gathered}z^{2}-1 \\ \left(z^{+}+2\right)\left(z^{+}\right.\end{gathered}$in the region $|z|<2$.
14. Prove that there does not exist an elliptic function with a single simple pole.
(14 $\times 1=14$ weightage)

Part B

Answer any seven questions.
Each question carries 2 weightage.
15. Prove that the cross ratio $\left(z_{1}, z 2, z 3, z 4\right)$ is real if and only if the 4 points line on a circle or on a straight line.
16. Find the linear transformation which carries $\mid z I=1$ and $|z \quad 1|=\stackrel{1}{\text { into concentric circles. What }}$ is the ratio of the radii.
17. If $f(z)$ is analytic in an open disk A , then prove that:
(z) $d z=0$ for every closed curve y in A .
18. Suppose that $f(z)$ is analytic in an open disk A, and let y be a closed curve in A. For any point a not on y, prove that:

$$
n(r, a) f(a)=\stackrel{\mathbf{1}}{2 \pi i} \int_{\mathrm{r}} \frac{\mathbf{f}(\mathbf{z})}{z-a} d z
$$

where $\mathrm{n}(y, a)$ is the index of a with respect to γ.
19. Show that any function which is meromorphic on the extended plane is rational.
20. Prove that a non-constant analytic function maps open sets onto open sets.
21. State and prove Argument principle.
22. If the functions $f_{k}(z)$ are analytic and non-zero in a region SI, and is $f_{k}(z)$ converges to $f(z)$, uniformly on every compact of Ω, prove that $f(z)$ is either identically zero or never equal to zero in S2.
23. If u is harmonic, show that $f=u_{x}-1 u_{y}$ is analytic.
24. Show that any even elliptic function with periods w_{1} and w_{2} can be written in the form :

$$
\mathrm{C}_{\substack{ \\\mathrm{n}=\boldsymbol{1} \mathscr{\mathscr { T }}(z)-\mathscr{P}\left(b_{k}\right)}}
$$

provided that 0 is neither a zero nor a pole.

$$
\text { (} 7 \times 2=14 \text { weightage) }
$$

Part C

Answer any two questions.
Each question carries 4 weightage.
25. List $f(z)$ be analytic on the set \mathbf{R}^{1} obtained from a rectangle R by omitting a finite number of interior points If :
$\operatorname{lira}_{z}\left(\mathrm{z}-\mathscr{G}_{1}\right) \mathrm{f}(z)=0$ for all j. then prove that $\mathrm{J} \mathrm{f}(z) d z=0$.
26. A region Ω is simply-connected if and only if $n(\gamma, a)=0$ for all cycles yin $S 2$ and all points a which do not belong to S2.
27. Describe the Laurent series development.
28. Derive the Poisson Integral Formula for Harmonic Functions.

$$
\text { (} 2 \times 4=8 \text { weightage) }
$$

