D6718

Name.....

Reg. No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2016

(CUCSS)

Mathematics

MT 3C 14—LINEAR PROGRAMMING AND IT'S APPLICATIONS

Time : Three Hours

Maximum: 36 Weightage

Part A

Answer **all** the questions. Each question carries **weightage** 1.

- 1. Define boundary point of a set. Give an example of a boundary point of a set in E_3 , the three dimensional Euclidean space.
- 2. Define closed set and open set. Give an example of a set that is both open and closed.
- 3. Define the line in E_3 passing through two points X_1 and X_2 .
- 4. Prove that the convex hull of the set S is the set of all convex linear combinations of the points of S.
- 5. Define directional derivative of f(X) in the direction of Y.
- 6. Distinguish between local extrema and global extrema.
- 7. Define Lagrangian function and Lagrange multipliers.
- 8. What is meant by loops in a transportation array ?
- 9. What is Caterer problem ?
- 10. When do we say that the transportation problem reduces to an assignment problem ?
- 11. Describe the general form of an integer linear programming problem in two dimensional space.
- 12. Define mixed integer vector.
- 13. Define pay off in a game. Give an example.
- 14. Define the terms saddle point and value of the game in theory of games.

 $(14 \mathbf{x} \mathbf{1} = \mathbf{14} \text{ weightage})$

Part B

Answer any **seven** questions. Each question carries **weightage** 2.

- 15. Prove that union of two open sets is open.
- 16. Give an example of a convex set with one vertex only.

Turn over

(Pages : 3)

- 17. Find the convex hull of the set $S = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1)\}$ in E_3 .
- 18. Show that if a **polytope** has a vertex, then it has an edge.
- 19. Prove that $f(x) = x^2$ is a convex function.
- 20. Define the dual of a linear programming problem. Prove that dual of the dual is the primal problem.
- 21. If the primal problem is feasible, prove that it has an unbounded optimum if and only if the dual has no feasible solution.
- 22. Describe the concept of loop in a transportation array.
- 23. By the cutting plane method :

Minimise : $4x_1 + 5x_2$

subject to : $3x_1 + x_2 = 2$

 $4x_2 5$

 $3x_1 + 2x_2$ **7**

 x_1, x_2 non-negative integers.

24. Explain the terms mixed strategy, pure strategy and optimal strategies with reference to any matrix game.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries *weightage* 4.

25. Use simplex method to:

Maximize : $3x_1 + 2x_2 + 3x_3$

subject to the constraints :

x1 + x2 + x3 9

 $2x_1 + 3x_2 + 5x_3 30$

 $2x_1 - x_2 - x_3 S 8$

 $x_1, x_2, x_3 z 0.$

26. Solve that the transportation problem for minimum co	cost with the cost coefficients, demands and
supplies as given in the following table. Obtain three	optimal solutions.

	D_1	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_4	
01	1	2	—2	3	70
	2	4	0	1	38
0 ₃	1	2	- 2		32
	40	28	30	42	

27. Solve the following integer linear programming problem :

Maximize :
$$\phi(X) = 3x_1 + 4x_2$$

subject to : $2x_1 + 4x_2 513$
 $-2x_1 + x_2$ 2
 $2x_1 + 2x_2$ 1
 $6x_1 - 4x_2 515$
xi, x2 O

 x_1 and x_2 are integers.

28. Use the notion of dominance to simplify the following payoff matrix and then solve the game:-

¹ 0	5	-4
3	9	-6
з	—1	2,

 $(2 \ge 4 = 8 \text{ weightage})$