(Pages	:	2)
(T mgon	•	-,

Name	••••
Reg. No	

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2015

(CUCBCSS-UG)

Complementary Course

PHY 1C 01—PROPERTIES OF MATTER AND THERMODYNAMICS

Time: Three Hours Maximum: 64 Marks

Section A (One Word)

Answer all questions.

Each question carries 1 mark.

1.	As the temperature increases the Young's Modulus of a steel wire ———	—.
2	The dimensions of surface tension are ———.	

- 3. The angle of contact for pure water and clear glass is ———.
- 4. The viscosity of gases with increase in temperature.
- 5. The type of modulus of elasticity of gases is ———.
- 6. When the pressure increases, the boiling point of water ———.
- 7. When work is done by an isolated system its internal energy ———.
- 8. The change in Helmoltz free energy function during an isothermal isochoric process is ———.
- 9. During an adiabatic process the enthalpy of the system —
- 10. The efficiency of a Carnot's engine working between temperatures 500 K and 300 K is ———.

 $(10 \times 1 = 10 \text{ marks})$

Section B

Answer all questions.

Each question carries 2 marks.

- 11. Define the terms angle of twist and angle of shear.
- 12. What is a cantilever?
- 13. What is meant by Brownian motion? How does temperature affect this movement?
- 14. Assuming the expression for excess of pressure on a curved liquid surface, deduce the excess of pressure inside a liquid spherical drop and bubble.
- 15. State Carnot's theorem.
- 16. How does the pressure affect the boiling point of a liquid and melting point of ice?
- 17. State and explain second law of thermodynamics.

 $(7 \times 2 = 14 \text{ marks})$

Turn over

Section C

Answer any two questions. Each question carries 4 marks.

- 18. What is an I-section girder? Why are I-section girders preferred?
- 19. Define the term surface tension. Derive an expression for finding the work done in blowing a liquid bubble.
- 20. Derive Stoke's formula for the velocity of a small sphere falling through a viscous liquid.
- 21. Derive Clasius-Cleyperon equation.
- 22. Derive an expression for work done during an adiabatic expansion process.

 $(2 \times 4 = 8 \text{ marks})$

Section D

Answer any three questions. Each question carries 4 marks.

- 23. Calculate the work done in twisting a steel wire of radius 10^{-3} m. and length 0.25 m. through an angle of 45°. Given the rigidity modulus of wire is 8×10^{10} Nm⁻².
- 24. Calculate the radius of the drop of water falling through air, if the terminal velocity of the drop is $0.012~\rm ms^{-1}$; viscosity of air is $1.81\times10^{-5}~\rm SI$ units and density of air is $1.21\times10^{-3}~\rm kg.m.^{-3}$?
- 25. A Carnot's engine works between two temperatures whose difference is 100° C. If it absorbs 746 J of heat from source and gives 546 J to sink, calculate the temperature of source and sink.
- 26. Calculate the work done if one mole of an ideal gas is compressed very slowly at 27° C. to one fourth of the original volume. $R = 8.314 \text{ J mol.}^{-1} \text{ K}^{-1}$.
- 27. Calculate the change in entropy when 10 g of ice at 0° C. is converted into steam at 100° C. Latent heat of fusion of ice is 3.35×10^5 J kg.⁻¹; Latent heat of steam is 2.268×10^6 J kg.⁻¹ and Specific heat capacity of water is 4.2×10^3 Jkg.⁻¹ K⁻¹.

 $(3 \times 4 = 12 \text{ math})$

'nι

Section E

Answer any two questions. Each question carries 10 marks.

- 28. A rectangular bar of iron is supported at its two ends of knife edges and a load is applied at the middle point. Derive an expression for the depression at the middle. Describe an experiment to determine Young's modulus of a bar using this arrangement.
- 29. Derive Poiseulli's formula for the flow of a liquid through a capillary tube. Describe an experiment to measure the viscosity of a liquid using the formula.
- 30. Describe the working of a Carnot's engine. Define efficiency of a heat engine. Derive an expression for efficiency of a Carnot's engine.

 $(2 \times 10 = 20 \text{ marks})$