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ABSTRACT 

Bowman Birk inhibitors (BBI) are small protease inhibitors found in the 

seeds of legumes in particular. Their molecular masses are in the range of 6-

9 kDa. They comprise of a binary arrangement of two sub domains with a 

conserved array of seven disulphide bridges, which play a pivotal role in the 

stability of the inhibitors. These inhibitors interact simultaneously and 

independently with two molecules of proteinases. In addition to the 

protease inhibitor activity, BBI is reported to have anticarcinogenic and 

radio protective activity and immune stimulating properties. BBIs have also 

been implicated to play a vital role in plant defense mechanism. Horse gram 

(Dolichos biflorus) is a pulse crop native to South East Asia and Tropical 

Africa. Four isoforms of BBIs, from horsegram seeds have been isolated. The 

inhibitors of horsegram (HGIs) are single polypeptides with a molecular 

mass of 8.5 kDa. However SDS-PAGE and analytical gel filtration indicate the 

molecular mass to be 16 kDa, suggesting that they exist as dimers in 

solution. In contrast, inhibitors of germinated horse gram seeds, HGGIs exist 

as monomers. The role of active site residue Lys24 and C-terminal end in the 

dimeric status of the major inhibitor (HGI-III) was previously established by 

in vitro and homology modeling. To delineate their role in vivo the HGI-III 

gene was cloned in E. coli and expressed.  

HGI-III specific gene was isolated from the genomic DNA of 

horsegram by PCR based method. The gene was cloned in pRSET C vector 

such that the extra residues from the vector are avoided. pRSET-rHGI was 

functionally expressed in E.coli cells and was purified to homogeneity. The 

characterization of rHGI was carried out and was comparable to the HGI-III 

already reported. rHGI also existed as a dimer and the kinetic constants of 

the inhibitor towards trypsin and chymotrypsin were comparable to the 

HGI-III.  
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To evaluate the role of active site residue Lys24 and the C-terminal 

end in dimerisation, site directed mutagenesis was performed. 

Characterization of the inhibitory activities of the mutants revealed that the 

K24A mutant inhibited elastase instead of trypsin. D75A mutant and Δ76 

mutant retained the trypsin inhibitory activity. All the mutants and rHGI 

exhibited similar chymotrypsin inhibitory activity. The oligomerisation status 

of the mutants was studied using SDS-PAGE and size exclusion 

chromatography. The studies pointed that K24A mutant existed as a 

monomer. The C-terminal mutants, D75A and Δ 76 also existed as 

monomers. Thermal stability studies revealed that the monomers were less 

stable than the dimers. Thus the cloning and heterologous expression of a 

functional rHGI provides a platform to unveil the fine specificity of the 

interactions involved in the dimeric status of HGI-III.  

The BBIs have been extensively studied and known to prevent 

malignant transformation in cancerous cells. The large size of BBIs hinders 

the bioavailability of orally administered the BBIs. Smaller peptides 

comprising the inhibitor domain are an attractive alternative. The trypsin 

inhibitory (TID) domain of horsegram BBI was genetically engineered. The 

expressed rTID was purified to homogeneity and was evaluated. The 

apparent molecular mass of the expressed protein was ~4000 Da. The 

purified inhibitor was stable thermally and also to proteases like pepsin and 

pancreatin. Kinetic studies indicated that the expressed peptide (rTID) is a 

non-competitive inhibitor of trypsin and also inhibited tryptase. Preliminary 

studies revealed that rTID inhibits other trypsin like proteases. This smaller 

peptide is a better prospect for drug design targeted at tryptase, the 

enzyme implicated in inflammatory, allergic disorders and multiple sclerosis. 
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