CLONING, EXPRESSION AND SITE-DIRECTED MUTAGENESIS OF THE BOWMAN-BIRK INHIBITOR OF HORSEGRAM (*Dolichos biflorus*).

A Thesis Submitted to the Department of Biochemistry University of Mysore, Mysore in fulfillment of the requirements for the degree of Doctor of Philosophy

by

Deepa G. Muricken

Under the supervision of

Dr. Lalitha R. Gowda

Department of Protein Chemistry and Technology CSIR-Central Food Technological Research Institute Mysore –570 020, India September, 2011

DECLARATION

I hereby declare that this thesis entitled **CLONING, EXPRESSION AND SITE-DIRECTED MUTAGENESIS OF THE BOWMAN-BIRK INHIBITOR OF HORSEGRAM (Dolichos biflorus),** submitted herewith, for the degree of Doctor of Philosophy in Biochemistry of the University of Mysore, Mysore, is the result of work done by me in the Department of Protein Chemistry and Technology, Central Food Technological Research Institute (CFTRI), Mysore, India, under the guidance and supervision of Dr. Lalitha R. Gowda, during the period of May, 2004 - September, 2011.

I further declare that the results of this work have not been previously submitted for any other degree or fellowship.

Mysore September, 2011.

Deepa G. Muricken

Guide

Head of the Department

Dr. Lalitha R. Gowda

Department of Protein Chemistry and Technology

CERTIFICATE

I hereby certify that this thesis 'Cloning, expression and site-directed mutagenesis of the Bowman-Birk inhibitor of horsegram (*Dolichos biflorus*)', submitted by **Mrs.Deepa G. Muricken** to the University of Mysore, Mysore, for the degree of **Doctor of Philosophy in Biochemistry** is the result of research work carried out by her in the Department of Protein Chemistry and Technology, Central Food Technological Research Institute (CFTRI), Mysore, under my guidance and supervision. This work has not been submitted either partially or fully for any other degree or fellowship.

Mysore Date: Dr. Lalitha R. Gowda

ABSTRACT

Bowman Birk inhibitors (BBI) are small protease inhibitors found in the seeds of legumes in particular. Their molecular masses are in the range of 6-9 kDa. They comprise of a binary arrangement of two sub domains with a conserved array of seven disulphide bridges, which play a pivotal role in the stability of the inhibitors. These inhibitors interact simultaneously and independently with two molecules of proteinases. In addition to the protease inhibitor activity, BBI is reported to have anticarcinogenic and radio protective activity and immune stimulating properties. BBIs have also been implicated to play a vital role in plant defense mechanism. Horse gram (Dolichos biflorus) is a pulse crop native to South East Asia and Tropical Africa. Four isoforms of BBIs, from horsegram seeds have been isolated. The inhibitors of horsegram (HGIs) are single polypeptides with a molecular mass of 8.5 kDa. However SDS-PAGE and analytical gel filtration indicate the molecular mass to be 16 kDa, suggesting that they exist as dimers in solution. In contrast, inhibitors of germinated horse gram seeds, HGGIs exist as monomers. The role of active site residue Lys²⁴ and C-terminal end in the dimeric status of the major inhibitor (HGI-III) was previously established by in vitro and homology modeling. To delineate their role in vivo the HGI-III gene was cloned in *E. coli* and expressed.

HGI-III specific gene was isolated from the genomic DNA of horsegram by PCR based method. The gene was cloned in pRSET C vector such that the extra residues from the vector are avoided. pRSET-rHGI was functionally expressed in *E.coli* cells and was purified to homogeneity. The characterization of rHGI was carried out and was comparable to the HGI-III already reported. rHGI also existed as a dimer and the kinetic constants of the inhibitor towards trypsin and chymotrypsin were comparable to the HGI-III. To evaluate the role of active site residue Lys²⁴ and the C-terminal end in dimerisation, site directed mutagenesis was performed. Characterization of the inhibitory activities of the mutants revealed that the K24A mutant inhibited elastase instead of trypsin. D75A mutant and Δ 76 mutant retained the trypsin inhibitory activity. All the mutants and rHGI exhibited similar chymotrypsin inhibitory activity. The oligomerisation status of the mutants was studied using SDS-PAGE and size exclusion chromatography. The studies pointed that K24A mutant existed as a monomer. The C-terminal mutants, D75A and Δ 76 also existed as stable than the dimers. Thus the cloning and heterologous expression of a functional rHGI provides a platform to unveil the fine specificity of the interactions involved in the dimeric status of HGI-III.

The BBIs have been extensively studied and known to prevent malignant transformation in cancerous cells. The large size of BBIs hinders the bioavailability of orally administered the BBIs. Smaller peptides comprising the inhibitor domain are an attractive alternative. The trypsin inhibitory (TID) domain of horsegram BBI was genetically engineered. The expressed rTID was purified to homogeneity and was evaluated. The apparent molecular mass of the expressed protein was ~4000 Da. The purified inhibitor was stable thermally and also to proteases like pepsin and pancreatin. Kinetic studies indicated that the expressed peptide (rTID) is a non-competitive inhibitor of trypsin and also inhibited tryptase. Preliminary studies revealed that rTID inhibits other trypsin like proteases. This smaller peptide is a better prospect for drug design targeted at tryptase, the enzyme implicated in inflammatory, allergic disorders and multiple sclerosis.

ACKNOWLEDGMENTS

The words are inadequate to express my deep sense of gratitude to Dr. Lalitha Ramakrishna Gowda, for her stimulating guidance, unstinting support and constant encouragement throughout the course of this investigation. I thank her for providing a stimulating research atmosphere in the laboratory and constructive suggestions and valuable advice at very step.

My sincere thanks to Dr. G. Venkiteswara Rao, Director CFTRI, Mysore, for providing the necessary facilities to work in the institute and permitting me to submit the results in the form of the thesis. I am greatful to Dr. A. G. Appu Rao, Head, Protein Chemistry and Technology, for his constant help and encouragement.

My heartfelt thanks are due to Prof. Ramakrishna Gowda, Department of Physics, University of Mysore, and Dr. Asha Martin, Department of Food Safety and Analytical Quality Control Laboratory, CFTRI for their constant support and encouragement.

I greatfully acknowledge Prof. H. S. Savithri, Department of Biochemistry, and Prof. M. R. N. Murthy, Molecular Biophysics Unit Indian Institute of Science, Bangalore for their help in cloning and their valuable suggestions and also for their moral support and constant encouragement.

I thank all scientists, staff members in the department both past and present for creating an inspiring atmosphere for the completion of my research work.

I acknowledge timely help and cooperation of the staff of FOSTIS-Library and Central Instruments Facility and Services.

The financial support from the Council of Scientific and Industrial Research, New Delhi is greatly acknowledged.

My special thanks to Pradeep, Santosh, Vivek Sr., Mallikarjuna, Thippeswamy, Rohini, Ramnath, Lingaraju, Vivek jr., Hari, Jimsheena, Dr.Jaba, Dev, Ganesh, Rajshekar, Vijay, Vinod, Yeswanth, all my friends and fellow colleagues for their unstinted cooperation, and help.

I cherish the help and support of all my friends, Reeta, Lokesh, Lincy, Shino, Reena, Divya, Sunitha and all other `mallu' friends past and present who have been with me throughout my personal and professional moments of glory and despair. Many thanks to the companionship and affection. My special thanks to Mr. J.V Francis and family and also to the sisters and inmates of Vimala Terminal Care Centre for their timely help, affection and support rendered to me.

Special thanks to my husband Deepak, for the inspirations and care rendered to me which helped me to proceed successfully.

Words are not sufficient to thank my beloved parents, sister and brother, who stood as a tower of strength during the moments of frustration and helped me to achieve the goal.

My special thanks to my son Shaun and Daughter Maria, whose presence in my life made me to overcome every adverse situation and to move ahead successfully.

I sincerely appreciate the tremendous support and encouragement rendered by my father-in-laws, mother-in-laws, and sisters in laws and brothers in laws which has enabled me to successfully complete this work.

Words don't suffice for expressing my gratitude to the one, The Almighty, who brought me here and molded my life in the right way with right persons. I am always indebeted.

Mysore September 2011 Deepa G. Muricken

CONTENTS

LIST OF ABBREVIATIONS

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1: INTRODUCTION

Protease inhibitors	2
Kunitz inhibitor family	7
Bowman-Birk inhibitor family	7
Occurrence of BBI (Sources)	8
BBIs of Leguminosae	8
BBIs of Compositeae	10
BBIs of monocots	11
Biosynthesis of BBI	12
Screening/Identification	13
Quantitative Assays	14
Molecular properties	15
Isolation and purification of BBIs	17
Inhibitory properties	18
Chemistry and structure of BBIs	20
Homology	26
Heterogeneity and isoforms of BBI	28
Oligomeric status of BBIs	29
Reactive site peptide bond of BBI	32

VIII

Chemical modification	35		
Enzymatic fragmentation	36		
Stability of BBIs	37		
Standard Mechanism of action of BBIs	38		
Evolution of inhibitors	40		
BBI derived synthetic inhibitors	42		
Heterologous expression of BBIs	45		
Application of BBIs	46		
Horsegram	52		
Aim and Scope of present investigation			
CHAPTER 2: MATERIALS AND MEHODS			
Materials	58		
Methods	61		

CHAPTER 3: Functional expression of the major Bowman-Birk inhibitor of horsegram-HGI-III

Results	90
Construction of pRSET-rHGI	90
Functional expression of rHGI	96
Purification of rHGI	96
Biochemical characterization of rHGI	98
N-terminal sequence analysis	102
Molecular weight determination	102

Estimation of disulphide bonds	105
pH and thermal stability of rHGI	106
Inhibitory properties of rHGI	107
Simultaneous and independent inhibition of trypsin/chymotrypsin by rHGI	113
Cross reactivity of rHGI with anti HGI-III	115
Discussion	115

CHAPTER 4: Site directed mutagenesis to validate the role of C-terminal tail in the dimerisation of HGI-III

Results	123
Primer designing for the site directed mutagenesis	123
Construction of point mutants of rHGI	124
Mutagenesis of Lys ²⁴ to Ala	125
Size exclusion chromatography	126
Thermal stability studies of rHGI-K24A	129
Construction of expression plasmids and point mutants of HGI-III as C-terminal (His) ₆ tagged proteins.	130
Expression of pET20b-HGI	132
One step purification of the (His) ₆ -tagged fusion proteins	132
Expression of pET-20bHGI K24A mutant	133
Construction of pET-20bHGI D75A	134
Construction of Δ 76 mutant of rHGI	136
Evaluation of kinetic properties of the mutants	138

SDS-PAGE analysis of mutants	146
Size exclusion chromatography of mutants	148
Thermal stability studies	151
Discussion	153

CHAPTER 5: Design and molecular engineering of a small trypsin inhibitor based on the binding loop of horsegram seed trypsin inhibitor

Results	
Design of the stable mini inhibitors	158
Purification and characterisation of recombinant trypsin inhibitory domain (rTID)	161
Size exclusion chromatography	165
Inhibitory properties of pET20b-rTID	166
Stability studies	170
Thermal stability of rTID	170
Invitro stability of rTID to gastrointestinal proteases	170
Discussion	171
CHAPTER 6: SUMMARY AND CONCLUSIONS 1	
REFERENCES	185

LIST OF ABBREVIATIONS

%	Percentage
λ	Wavelength
°C	Degree centigrade
λ_{max}	Absorption maximum (wavelength)
ε	Molar extinction coefficient
μg	Micro gram
[E]	Enzyme concentration
[S]	Substrate concentration
[1]	Inhibitor concentration
А	Absorbance
A.U.	Absorbance unit
APNE	N-acetyl-DL-phenylalanine- β -napthyl ester
Amp	Ampicillin
APS	Ammonium persulfate
BBI	Bowman-Birk inhibitor
BBIC	Bowman-Birk inhibitor concentrate
BAPNA	∞ -N-Benzoyl-DL-arginine- p -nitroanilide
BCIP	5-Bromo-4-chloro-3-indolylphosphate
BSA	Bovine serum albumin
BTPNA	N-Benzoyl-L-tyrosine-p-nitroanilide
CaCl ₂	Calcium chloride
CAPS	3-[Cyclohexylamino]-1-propanesulfonic acid
CBB	Coomassie brilliant blue
CCl ₄	Carbon tetrachloride
cDNA	Complementary DNA
CIU	Chymotrypsin inhibitory units

cm	Centimeter
CNBr	Cyanogen bromide
CU	Chymotrypsin unit
DEAE	Diethylaminoethyl
DMSO	Dimethylsulfoxide
DTT	DL-Dithiothreitol
dNTPs	Deoxynuleotide mixture
DNA	Deoxyribonucleic acid
EDTA	Ethylene diamine tetraacetic acid
E. coli	Escherichia coli
EtBr	Ethidium bromide
EIU	Elastase inhibitory unit
g	Grams
GuHCl	Guanidine hydrochloride
h	Hour
HRP	Horseradish peroxidase
HCI	Hydrochloric acid
HGGI	Horsegram germinated inhibitor
HGI	Horsegram inhibitor
HPLC	High performance liquid chromatography
IPTG	Isopropyl thiogalactopyranoside
IU	Inhibitory units
i.d.	Internal diameter
kDa/Da	Kilo Daltons/Daltons
K _i	Inhibitory constant
K _m	Michaelis-Menten constant
L	Liter
LB	Luria Broth
MgCl ₂	Magnesium chloride

М	Molar concentration
MALDI-MS	Matrix assisted laser desorption ionization - Mass spectrometry
MgCl ₂	Magnesium chloride
MgSO4	Magnesium sulphate
MnCl ₂	Manganese chloride
	Minute
min	
mL	Milliliter
M _r	Molecular weight
NaCl	Sodium chloride
NaOH	Sodium hydroxide
NAPNA	N-Succinyl-Ala-Ala-Ala- <i>p</i> -nitroanilide.
NBT	Nitroblue tetrazolium
NTSB	2-Nitro-5-thiosulfobenzoate
nm	Nanometer
PAGE	Polyacrylamide gel electrophoresis
PBS	Phosphate buffered saline
pmole	Picomole
PCR	Polymerase chain reaction
PMSF	Phenylmethyl-sulfonyl fluoride
РТС	Phenylthiocarbamyl
PVDF	Polyvinilidine diflouride membrane
rHGI	Recombinant horsegram inhibitor
rTID	Recombinant trypsin inhibitory domain
RP	Reverse phase
RNA	Ribonucleic acid
R _t	Retention time
RP-HPLC	Reverse phase-High performance liquid chromatography
SDS	Sodium dodecyl sulfate
Sec	Second

XIV

TCA	Trichloroacetic acid
TAE	Tris acetate ethylene diamine tetraacetic acid
TE	Tris ethylene diamine tetraacetic acid
TBS	Tris-buffer saline
TEMED	N-N, N'-N'-Tetramethyl 1, 2-diaminoethane
TFA	Trifluoroacetic acid
TIU	Trypsin inhibitory unit
ТРСК	Tosyl-phenyalanine chloromethylketone
Tris	Tris (hydroxymethyl) amino methane
TU	Trypsin unit
TLCK	Tosyl-lysine chloromethylketone
T _m	Melting temperature
UV	Ultraviolet
v/v	Volume by volume
VS	Versus
w/v	Weight by volume
V _{max}	Maximum velocity
Ve	Elution volume

	LIST OF FIGURES		
Fig. 1.1	Disulfide connectivity in dicot and monocot BBIs	16	
Fig. 1.2	Alignment of 35 Bowman-Birk inhibitor domains	21	
Fig. 1.3	Schematic representation of the major BBI from horsegram	22	
Fig. 1.4	The internal homology in horsegram BBI, HGI-III	22	
Fig. 1.5	Interactions at the dimer interface in HGI-III responsible for self association	31	
Fig. 1.6	Horsegram pods and seeds	53	
Fig. 2.1	Flow diagram of the reactions that occur during gas phase sequencing of protein or peptide on ABI-477A sequenator	71	
Fig. 3.1	Agarose gel electrophoresis of horsegram genomic DNA	91	
Fig. 3.2	Agarose gel electrophoresis showing the 230-bp amplified product using the genomic DNA as template	91	
Fig. 3.3	(A) The nucleotide sequence of the amplified PCR product of HGI-III gene. (B) The translated sequence of the PCR product	92	
Fig. 3.4	Agarose gel electrophoresis showing the 260-bp amplicon with the engineered restriction sites	93	
Fig. 3.5	Agarose gel electrophoresis profile of plasmid DNA isolated from putative clones	93	
Fig. 3.6	Agarose gel electrophoresis of the plasmid DNA digested with <i>BamH</i> I	95	
Fig. 3.7	Schematic representation of the expression cassette in pRSETC vector to produce rHGI protein	95	
Fig. 3.8	SDS–PAGE (15% T, 2.7% C) profile of cell free extracts of pRSET-rHGI	97	
Fig. 3.9	Trypsin sepharose affinity chromatography profile of rHGI	97	
Fig. 3.10	Native-PAGE profile of rHGI showing trypsin and chymotrypsin inhibitory activity	98	
Fig. 3.11	RP-HPLC profile of purified rHGI	99	
Fig. 3.12	RP- HPLC elution profile of the PTH- amino acids released from rHGI	100-101	
Fig. 3.13	SDS-PAGE (15%T, 2.7%C) profile of purified HGIs	103	
Fig. 3.14	Size-exclusion chromatography of seed HGI-III and rHGI	103	
Fig. 3.15	ESI mass spectrum of rHGI	104	
Fig. 3.16	An expansion of the molecular peak of rHGI of Fig. 3.15 showing an isotopic pattern of (M+H) ⁸⁺ charge	104	

	state	
Fig. 3.17	Assay for disulphide bonds of rHGI	105
Fig. 3.18	Effect of pH on the stability of rHGI	105
Fig. 3.19	Thermal stability of rHGI	100
Fig. 3.20 A	Stoichiometric titration of bovine trypsin inhibition by	107
116. 5.20 /	rHGI	100
Fig. 3.20 B	Stoichiometric titration of bovine chymotrypsin	108
0	inhibition by rHGI	
Fig. 3.21	Michaelis-Menten plot showing the effect of substrate	110
-	concentration on the activity of (A) bovine trypsin (B)	
	bovine chymotrypsin in the presence of various	
	concentrations of rHGI	
Fig. 3.22	Lineweaver-Burk plot of data from Fig. 3.21 showing	111
	competitive inhibition by rHGI for (A) trypsin (B)	
	chymotrypsin	
Fig. 3.23	Dixon plot for determining the dissociation constant	112
	(K _i) of rHGI. (A) bovine trypsin. (B) bovine	
	chymotrypsin	
Fig. 3.24	Chymotrypsin inhibition by rHGI in the presence of	114
	varying concentrations of trypsin	
Fig. 3.25	Inhibition of trypsin by rHGI in the presence of varying	114
	concentrations of chymotrypsin	
Fig. 3.26	Dot-Blot analysis of recombinant horsegram inhibitor	115
	using antibodies raised against HGI-III	
Fig. 4.1	Primer designing strategy for site directed	124
	mutagenesis of rHGI	
Fig. 4.2	Schematic representation of site directed mutagenesis	125
	using the Quik change PCR method	
Fig. 4.3	SDS–PAGE (12.5% T, 2.7% C) profile of cell free	127
	extracts of rHGI-K24A	
Fig. 4.4	Gelatin embeded Native-PAGE of K24A mutant	127
Fig. 4.5	Size-exclusion chromatography of rHGI and K24A	128
	mutant	
Fig. 4.6	SDS-PAGE (15%T, 2.7%C) followed by Western blotting	129
	and immuno-detection with anti-HGI-III	100
Fig. 4.7	Thermal stability of rHGI and rHGI-K24A mutant at	130
5:- 4.0	90±1°C	424
Fig. 4.8	Analysis of recombinant plasmid DNA using 0.8 %	131
	agarose gel electrophoresis	101
Fig. 4.9.	Schematic representation of pET20b-HGI expression	131
Fig. 4.10	cassette	100
Fig. 4.10	SDS-PAGE (15%T, 2.7%C) analysis of expressed pET- 20bHGI and rHGI	133
Fig. 4.11	SDS-PAGE (15% T, 2.7% C) profile of cell free extracts	12/
FIB. 4.11	TAGE (15% 1, 2.1% C) prome of cell free extracts	134

	of pET-20bHGI K24A	
Fig. 4.12	SDS–PAGE (15% T, 2.7% C) profile of cell free extracts	135
	of expressed pET-20bHGI D75A	
Fig. 4.13	Purification profile of pET-20bHGI D75A	135
Fig. 4.14	SDS-PAGE (15%T, 2.7%C) analysis of cell free extracts	137
0	of pET-20bHGI ⊿76	
Fig. 4.15	Purification profile of pET-20bHGI Δ76	137
Fig. 4.16	RP-HPLC purification of pET-20bHGI Δ76	138
Fig. 4.17 A	Lineweaver-Burk plot showing competitive inhibition	139
	by pET-20bHGI K24A for porcine pancreatic elastase	
Fig. 4.17 B	Lineweaver-Burk plot showing competitive inhibition	139
0	by pET-20bHGI K24A for bovine chymotrypsin	
Fig. 4.18 A	Dixon plot for determining the dissociation constant	140
-	(K _i) of pET-20bHGI K24A mutant against porcine	
	pancreatic elastase	
Fig. 4.18 B	Dixon plot for determining the dissociation constant	140
	(K _i) of pET-20bHGI K24A mutant against bovine	
	chymotrypsin	
Fig. 4.19 A	Lineweaver-Burk plot of pET-20bHGI D75A mutant	142
	showing competitive inhibition for trypsin	
Fig. 4.19 B	Lineweaver-Burk plot of pET-20bHGI D75A mutant	142
-	showing competitive inhibition for chymotrypsin	
Fig. 4.20 A	Dixon plot for determining the dissociation constant	143
	(K _i) of pET-20bHGI D75A mutant bovine trypsin	
Fig. 4.20 B	Dixon plot for determining the dissociation constant	143
	(K i) of pET-20bHGI D75A mutant against bovine	
	chymotrypsin	
Fig. 4.21 A	Lineweaver-Burk plot showing competitive inhibition	144
	by pET-20bHGI ∆76 mutant for trypsin	
Fig. 4.21 B	Lineweaver-Burk plot showing competitive inhibition	144
	by pET-20bHGI Δ76 mutant for chymotrypsin	
Fig. 4.22 A	Dixon plot for determining the dissociation constant	145
	(K $_{i}$) of pET-20bHGI Δ 76 mutant bovine trypsin	
Fig. 4.22 B	Dixon plot for determining the dissociation constant	145
	(K $_{i}$) of pET-20bHGI Δ 76 mutant against bovine	
	chymotrypsin	
Fig. 4.23 A	SDS-PAGE (15%T, 2.7%C) analysis of purified pET-	147
	20bHGI K24A	
Fig. 4.23 B	SDS-PAGE (15%T, 2.7%C) analysis of expressed pET-	147
	20bHGI D75A	
Fig. 4.23 C	SDS-PAGE (15%T, 2.7%C) analysis of expressed pET-	147
	20bHGIΔ76	_
Fig. 4.24	SDS-PAGE (15%T, 2.7%C) followed by Western blotting	148
	and immuno-detection with anti-HGI-III	

XVIII

Fig. 4.25	Size-exclusion chromatography of rHGI mutants	150
	expressed with (His) ₆ fusion protein	
Fig. 4.26	Thermal stability of rHGI and mutants at 90±1 °C	152
Fig. 5.1	Pictorial representation of the trypsin inhibitory	159
	domain (TID) of the bifunctional horsegram BBI (HGI-	
)	
Fig. 5.2	Agarose gel electrophoresis showing 108 bp amplicon	159
	of the TID domain	
Fig. 5.3	The nucleotide sequence of the amplified PCR product	160
	of trypsin inhibitory domain	
Fig. 5.4	Schematic representation of the expression cassette	160
	in pET20b vector to produce rTID protein	
Fig. 5.5.	Agarose gel electrophoresis profile of plasmid DNA	161
	isolated from putative clones	
Fig. 5.6	Agarose gel electrophoresis for the confirmation of	161
	rTID	
Fig. 5.7	SDS–PAGE (12.5% T, 2.7% C) profile of cell free	162
	extracts of rTID	
Fig. 5.8 A	Size exclusion chromatography profile of rTID	163
Fig. 5.8 B	RP-HPLC purification of rTID	163
Fig. 5.9	SDS-PAGE (15% T, 2.7% C) profile of rTID	164
Fig. 5.10	ESI mass spectrum of rTID	164
Fig. 5.11	Size-exclusion chromatography of rTID	165
Fig. 5.12	Michaelis-Menten plot showing the effect of substrate	166
	concentration on the activity of bovine trypsin in the	
	presence of various concentrations of rTID	
Fig. 5.13	Lineweaver-Burk plot determining mode of inhibition	167
	of rTID	
Fig. 5.14	Dixon plot for determining the equilibrium	167
	dissociation constant (Ki) of rTID	
Fig. 5.15	Determination of IC ₅₀ value for human tryptase	169
Fig. 5.16	Thermal stability of rTID at 90 ± 1°C	169

LIST OF TABLES		
Table 1.1	Families of plant PIs with some examples.	4
Table 1.2	Residues P1 and P`1 and the reactive peptide bond of a few BBIs and analogs	34
Table 1.3	Botanical description of horsegram	53
Table 2.1	Preparation of separating gel and stacking gel.	66
Table 2.2	The PCR reaction mixture for the amplification of HGI-III gene	78
Table 2.3	The PCR reaction mixture used for Di-deoxy DNA sequencing reaction	80
Table 2.4	Oligonucleotide sequences used for cloning and site directed mutagenesis of rHGI	83
Table 2.5	The PCR reaction mixture for the amplification of trypsin domain from rHGI.	84
Table 3.1	The list of oligonucleotides used for the amplification of HGI-III gene and construction of plasmid pRSET-rHGI	92
Table 3.2	Dissociation constants (Ki) of HGI-III and rHGI for trypsin, and chymotrypsin inhibition	109
Table 4.1	Dissociation constants (Ki) of HGI-III and rHGI for trypsin, chymotrypsin and elastase inhibition	146
Table 4.2	Mutants of HGI showing their oligomeric status	151
Table 5.1.	Invitro stability of rTID to gastrointestinal proteases.	171