\qquad

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2017

 (CUCBCSS-UG)Chemistry
CHE 3B 03-PHYSICAL CHEMISTRY-I
Time : Three Hours
Maximum : 80 Marks

Section A (One Word)

Answer all questions.
Each question carries 1 mark.

1. The critical temperature Tc is related to van der Waals constants by the relation \qquad
2. The temperature at which a real gas shows ideal behavior, over a wide range of pressure is called
\qquad
3. Give one example for an intensive property.
4. For an isothermal reversible expansion of an ideal gas, $\Delta \mathrm{H}$ will be \qquad
5. Joule Thomson coefficient $\mu_{\mathrm{JT}}=$
6. $\operatorname{In} \mathrm{N}!=$ \qquad
7. Give one example for a path function.
8. With decrease in temperature, viscosity of a liquid will \qquad
9. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}), \mathrm{Kc}$ and Kp are related as \qquad
10. The equilibrium constant is related to the standard free energy change of a reaction as \qquad ($10 \times 1=10$ marks)

Section B (Short Answers)

Answer any ten questions.
Each question carries 2 marks.
11. Calculate the RMS velocity of H_{2} molecule at $27^{\circ} \mathrm{C}$.
12. What is compressibility factor?
13. Define mean freepath.
14. Define inversion temperature.
15. State and explain I law of thermodynamics.
16. Distinguish between a thermodynamic closed and isolated system.
17. What is meant by residual entropy?
18. How is molar refraction of a liquid related to its refractive index and density ?
19. What is meant by heterogenous equilibria? Give one example.
20. Enthalpy of neutralization of strong acid by a strong base is always constant. Explain.
21. One mole of an ideal gas expands isothermally at 300 K from a volume of $10 \mathrm{dm}^{3}$ to $20 \mathrm{dm}^{3}$ against a constant external pressure of 1 atmosphere. Calculate the work done by the system.
22. The equilibrium constant of a reaction is 7.5×10^{-5} at 300 K . Calculate the value of $\Delta \mathrm{G}^{0}$.

$$
(10 \times 2=20 \text { marks })
$$

Section C (Paragraphs)
 Answer any five questions.
 Each question carries 6 marks.

23. State Le Chateliers principle. What is the effect of increase of pressure and temperature in the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \Delta \mathrm{H}=-92.38 \mathrm{KJ}$. Explain.
24. Derive van der Waals equation for n moles of a gas.
25. Show that Joule-Thomson expansion is an isenthalpic process.
26. Derive Gibbs Helmholtz equation.
27. Define critical constants. Explain the determination of critical temperature and critical pressure of a gas.
28. The standard enthalpy of formation of gaseous water at 298 K is $-241.82 \mathrm{KJ} / \mathrm{mol}$. Estimate its value at 373 K . Given the following value of Cp (Molar) :
(i) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=33.58 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
(ii) $\mathrm{H}_{2}(\mathrm{~g})=28.84 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and
(iii) $\mathrm{O}_{2}(\mathrm{~g})=29.37 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

Assume that Cp are independent of temperature.
29. State and explain Nernst heat Theorem. What is its significance ?
30. Obtain the thermodynamic derivation of Law of Chemical equilibrium.

Section D (Essays)

Answer any two questions.
Each question carries 10 marks.
31. (a) Derive kinetic gas equation.
(b) Calculate the mean free path for a gas at STP. Collision diameter $\sigma=2 \times 10^{-10} \mathrm{~m}$. (3 marks)
32. (a) Derive Clausius- Clapeyron equation and discuss its application in liquid- vapour equilibria.
(b) Calculate the efficiency of heat engine working between a source at 480 K and sink at 200 K .
33. (a) Derive an equation relating change in entropy of an ideal gas with respect to a change in temperature and pressure.
(b) For the reaction $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{S})+\mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=170.85 \mathrm{KJ}$ and $\Delta \mathrm{S}=0.15 \mathrm{KJ} . \mathrm{K}^{-1}$ at 300 K . Predict whether the reaction is spontaneous or not at 300 K . Explain.
34. (a) Derive vant Hoffs equation.
(b) Express the value of equilibrium constant in terms of concentration of reactants and products for a hypothetical reaction $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{d} \mathrm{D}$. How is the value related to Kp ?
$\quad(3$ marks $)$
$[2 \times 10=20$ marks $]$

