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INTRODUCTION

^  The concept of convexity which was mainly defined

and studied in in the pioneering works of Newton,

Minkowski and others as described in [18], now finds a place

in several other mathematical structures such as vector

spaces, posets, lattices, metric spaces and graphs. This

development is motivated by not only the need for an

abstract theory of convexity generalising the classical

theorems in due to Helly, Caratheodory etc., but also to

unify geometric aspects of all these mathematical

structures^ In the course of the development it is found

that the properties of convex sets have been analyzsed

mainly in three ways, qualitatively, quantitatively and

combinatorially and finds its applications in problems of

pattern recognition, optimization, etc. [68].

The theory of graphs which originated in the

solution of the famous Ktinigsberg bridge problem during 1736

by Leonard Euler, now finds quite a lot of applications in



many other branches of science, engineering and social

science. See [5], [6], [10] for details.

This thesis is an attempt to study mainly some

combinatorial problems of convexity spaces and graphs,

following the footsteps of Levi, Jamison, Sierksma, Soltan,

Duchet and others.

1.1 DEFINITIONS AND PRELIMINARIES

In this section, we consider some basic

definitions and concepts mainly from [2], [7], [8] and [12].

For notations and terms not mentioned here, we follow [7],

[8] and [12].

^  graph 0 = G(V,E) = G(p,q) we generally mean a

finite connected graph without loops and multiple edges,

with vertex set V, edge set E, of order p and size q. The

symbol <S> means the subgraph induced by S.)

y)efinition 1.1. Let G = (V,E) be a graph. d(u,v), the

distance between u and v in V(G) is the length of the

shortest path connecting u and v, the eccentricity of the



vertex u, e(u) = max{d(u,v): v e V(0)},

,^lam(G) = max{e(u):u e V(0)}, rad(G) = min {e(u):u e V(G)},

C(G) = {u:e(u) = rad(G)} the center of G and a graph G is

called self centered if C(G) = V(G).

-Definition 1.2. Let G^= G2= (V^.E^) be two graphs.
The Cartesian product G^x G^ of G^ and G^ is defined as the

graph G where V(G) = V^x and {u^,vp is adjacent to

(u^.v^) if either u^= and or « E^ and
*l" *2* obtained by joining all the

vertices of G^^ to all the vertices of G^. The sequential

join Gj+Gj'*'* • •■^°n ®l'°2 '°n obtained by joining all
vertices of G. to all vertices of G.^^ for i = 1,2 ,n-l.
The graph K^+Kj+Kj^+K^^ is called a double star.

^finition 1.3. A chord of a cycle C is an edge connecting
non consecutive vertices of C. A graph G is chordal if

every cycle of length at least four has a chord.

/

Definition 1.4. A graph G is Ptolemaic if for any
u,v,w,x € V(G),

d(u,v).d(w,x) < d(u,w).d(v,x)+d(u,x).d(v,w).



Definition 1.5. The size of the maximum clique in G is the

clique number (o(G) of G. S c V(G) is said to separate u,v

in V(G) if u and v lie in different components of G\ S. S is

a clique separator whenever S induces a clique in G.

Definition 1.6. Let X be a set. Then I:X x X —> ̂ ) is an

^terval function on X if the following conditions hold.

(a) a,b € I(a,b) - Extensive law.

(b) I(a,b) = I(b,a) - Symmetry law.

Definition 1.7. Let G = (V,E) be a graph. S V is

geodesically convex if for all x,y of S, I(x,y) = {z:z is on

some shortest x-y path} S s. These convex sets are also

called distance convex (d-convex) sets. S ̂  V is minimal

path convex (m-convex) if for all x,y of S, I(x,y) = {z:z is

on some chordless x-y path) £ S,

^finition 1.8. For a graph 0, V(0), <f> and S S V(G) whose

induced subgraphs are isomorphic to K for n >0 are called
n

trivial convex sets. For any integer k > 0 a graph 0 is

k-convex if it has exactly k nontrivial convex sets.

A  (k,w)-convex graph is a k-convex graph with clique



number co. {0,2)-convex graphs are called distance convex

simple (d.c.s) it the convexity is geodesic convexity and

m-convex simple (m.c.s.) if the convexity is m-convexity.

When k-1 the k-convex graphs are called uniconvex graphs.

Definition 1.9. A graph is convex simple if it is either

d.c.s or m.c.s.

^Definition 1.10. A graph G is interval monotone if I(u,v)

is convex for each pair of vertices u and v of G. it is

totally non interval monotone (t.n.i.m.) if no nontrivial

interval is convex. Here, the trivial intervals are those

I(a,b) for which a=b, a adjacent to b or I(a,b) = V(G).

Definition 1.11. Let G = (V,E) be a graph and S c v(G).

Then the closure of S, (S) = {x:x is on some shortest path

connecting vertices of S}. Then, define as follows.

S - (S) , S = (S ). If S = S then is convex. The

geodetic iteration number gin(S) is the smallest number n

such that S = S . The geodetic iteration number gin(G) is

defined as the maximum value of a gin S over all S £ V(G).



/  . . .
Definition 1.12. A family t of subsets of a nonempty set X

is called a convexity on x if

1) <t>, yi G "e

2) *6 is stable for intersection, and

3) "6 is stable for nested union.

is called a convexity space and members of ^ are

called convex sets. The smallest convex set containing a

set A is called convex hull of A, denoted by Co(A).

^Definition 1.13. A convexity space X is an interval

convexity space if its convexity is induced by an interval.

Definition 1.14. A convexity space is of arity < n if its

,^'convex sets are determined by n-polytopes. That is, a set C

is convex if and only if Co(F) £ C for each subset F of

cardinality at most n.

Definition 1.15. A convexity space X is a matroid if it

satisfies the exchange axiom A £ X and p, q e X\ Co(A), then

p € Co({q} U A) implies that q € Co({p} U A) and is an

antimatroid (convex geometry) if it satisfies the



antiexchange law, A ^ X, p, q e X\ Co(A) then,

p € Co({q} U A) implies that q 0. Co({p} U A).

Definition 1.16. A subset H of X is called a half space if

both H and X\ H are convex. A convexity space X is said to

have separation property

S^: if all singletons are convex.

S^: if any two distinct points are separated by half

spaces. That is, if x^ x^ € X then there is a

half space H of X such that € H and x^ H.

S^: if any convex set and any singleton not contained

in C can be separated by half spaces. That is, if

C 9 X is convex and if x e X \ C, then there is a

half space H of X such that C ̂  H and x f? H.

S^: if any two disjoint convex sets can be separated
4

by half spaces. That is if ~ ̂  disjoint

convex sets then there is a half space H of X such

that c H and c X \ H.

Definition 1.17. A subset S of an interval space X is

star shaped at a point p € S provided for every x e S,
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I(x,p) £ S. The star center of S is the set of all points

at which S is star shaped. X is said to have the Brunn's

property if the star center of each subset of X is convex.

The star center is also called the kernel of S, denoted by

Ker(S).

Definition 1.18. Let X be convexity space then,

1. The Helly number of X is the smallest "n' such that

for each finite set F c X with cardinality at least

n+1, n {Co(F\ {a}): a g F}

(that is, F is Helly (H-) dependent).

2. The Caratheodory number of X is the smallest number ^n*

such that for each F c X with cardinality at least

n+1, Co(F) c U {co(F\{a}): a € F}

(that is, F is Caratheodory (C-) dependent).

3. The Radon number of X is the smallest number ^n* such

that each F c X with cardinality at least n+1, can be

partitioned into two sets F^ and F^ such that

Co(F^) n Co(F2) ̂  4>

(that is, F is Radon (R-) dependent).



4. The exchange number of X is the smallest number n such

that for each F c X of cardinality at least n+1 and

for each p e F,Co(F\ {p})c U {Co(F\ {a}): a e F, a ^ p}

(that is, F is exchange (E-) dependent).

These numbers are called convex invariants, denoted

by, h,c,r and e respectively.

Definition 1.19. A convexity space X is said to be join

hull commutative (JHC) if for any convex set C and any p e X,

Co(C U {p}) = U{Co({c,p}): c € C}.

Definition 1,20. An .interval convexity space X is said to

have the

1. Pasch property if for any a,b,p of X, a'e I(a,p)

and b'€ I(b,p) implies that I(a,b') n I(a',b) ip.

2. Peano property if for any a,b,c,u,v of X such that

u € I(a,b), V € I(c,u), there is a v' in I(b,c) such

that V e I(a,V').

If X is having both the properties it is called Pasch-Peano

space (PP space).
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Definition 1.21. Let V be a vector space over R. Let ̂  be

a nonempty family of a linear functionals on V . Then,

y* = {t ^(-oo,a]:F G y} generates a convexity on V called

the H convexity generated by If -f € ̂  whenever f g y,

it is called the symmetric H-convexity.

1.2. BACKGROUND OF THE WORK

Convexity is a very old topic whose origin can be

traced back at least to Archimedes. This extremely simple

and natural notion was however systematically studied by

Minkowski during 1911. Bonnesen and Fenchel [1], Valentine

[11] and many others also discuss the early development of

the theory.

Among the different aspects of convex analysis,

such as quantitative, qualitative and combinatorial, our

concern will be the last one, where in the classical

theorems of convexity in R^ of combinational type play a

significant role.

It is well known that, a subset A of a real vector
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space is convex if and only if it contains with each pair

X and y of its points, the entire line segment joining them.

It immediately follows that the intersection of any family

of convex sets is again a convex set, though the

intersection may be empty. The classical theorem due to

Edward Helly (1913) sets the condition under which this

intersection cannot be empty. Kelly's theorem and the

theorems due to Caratheodory (1907) and Radon (1921) made a

tremendous impact in the development of combinatorial

convexity theory and has been studied, applied and

generalised by many other authors [21], [31], [72], [74]

since 1950s. These theorems in states as follows [8].

felly's theorem: Let B = {B^, / . . . # be a family of r

convex sets in R^ with r > n+1. If every subfamily of n+1

sets in B has a nonempty intersection then ^

^ratheodory's theorem: If S is a nonempty subset of R^,

then every x in the convex hull of S can be expressed as a

convex combination of n+1 or fewer points.



12

Radons theorem: Let S = {x^, / . . • , be any set of finite

points in R^. If r > n+2, then S can be partitioned in to

two disjoint subsets S^and such that Co(S^) n CoCS^) ̂  </>.

Not only to generalise these classical theorems of

R^, but also to unify the properties of a variety of

mathematical structures such as vector spaces, ordered

sets, lattices, metric spaces and graphs, an axiomatic

foundation of convexity was laid down by Levi[51].

Let (X,^) be a 'Convexity Space'(convex structure,

aligned space, algebraic closure systems [31]). The members

of t are called convex sets and Co(A) = n {C: A £ C e },

the convex hull of A. CO(F), with F finite is called a

polytope. A polytope which can be spanned by n or less

points (where n > 0) will be refered to as an n-polytope.

The empty set is a 0-polytope. A 2-polytope Co({a,b}) is

also called a segment joining a and b. Aconvex

structure(or, its convexity) is of arity < n provided its

convex sets are precisely the sets C with the property

that Co(F) £ C for each subset F with cardinality atmost
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n. That is, a convexity of arity n is "determined by its

n-polytopes".

The standard convexity of a vector space, the

order convexity of a poset, convexity in a lattice,

semilattice and the convexity in a metric space [12] are

examples of convexity spaces of arity 2. The study of

H-convexity in a real vector space has been made in [19] and

[20].

For a convexity space X there exists four numbers

h(x), c(X), r(X), e(X) e {0,1,2,...} called the Helly

number, the Caratheodory number, the Radon number and the

exchange number (Sierksma number). See Definition 1.18. It

may be noted that many authors define the Radon number to be

one unit larger, which is defined as the first n such that

each set with at least n points has a Radon partition.

However, we prefer the Definition 1.18.

Let f be a function defined on the class of all

convex structures, and ranging into the set {0,1,2,...}.

Then f is called a convex invariant provided that isomorphic
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convex structures have equal f-values. Obviously, each of

the above defined functions h,c,r,e is a convex invariant.

Such functions allow for a classification of convex

structures according to their combinatorial properties. The

function h,c,r go back to traditional topics in the

combinatorial geometry of Euclidean space, and they are

therefore called classical convex invariants. Attempts to

find the interrelation between these invariants were made by

Levi [51], Sierksma [71] and Jamison [45]. We shall mention

some of these important results.

Levi's theorem [51]. Let (X,^) be a convex structure. Then

the existence of r implies the existence of h and h < r.

Eckhoff-Jamison inequality [45]. If c and h exists for a

convexity space, then r exists and r < c(h-l)+l if h 1,

or c < 00.

Sierksma's theorem [71]. e-1 < c < max{h,e-l}.

There are many other inequalities between these

invariants. The different cases regarding the existence or
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otherwise of c,h,r and e is analysed in [12], Kay and

Womble [46] has shown that Levi*s theorem is the only one

possible if we assume the finiteness of exactly one of the

numbers. Study of generalized Helly and Radon numbers

[48],[49], extension of Radon theorem due to Tverberg [74],

etc. are also found in literature.

The survey paper by Danzer et al. [31], has

considerably stimulated the investigations on various

aspects of convexity spaces. In the pioneering paper of

Ellis [35]., the condition of join hull commutativity (JHC)

was considered though the term was introduced by Kay and

Womble [46]. It is known [12] that a JHC space is of

arity < 2. Products of convexity spaces were studied by

Sierksma [70] and proved that JHC property is productive.

The concept of half space familiar in vector space

has been generalized to a convexity space [42]. Four

separation axioms (Definition 1.16) were introduced by Kay

and Womble [46] and Jamison [42]. Under the assumption of

S,, it is an easy observation that ♦ S.
1  4 3 ^2-
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It is known that, a convex structure is if and
3

only if it is generated by half spaces and that a lattice is

S. if and only if it is distributive.
4

We shall now consider the important concept of

interval operators (Definition 1.6) introduced by Calder

[22] in 1971 which provide a natural method of constructing

convex structures. The segment operator of a convex

structure (u,v) —► Co{u,v} is an interval operator.

Conversely, if I is an interval operator, define a subset C

of X to be interval convex provided I(x,y) £ C for all x,y

in C, we get a convexity space, called the interval

convexity space. If Co denotes the segment operator of "6,

then for any a,b in X, I(a,b) £ Co {a,b}. The two operators

need not be equal. It is an important observation that,

though the standard intervals and order intervals are

convex, the metric interval {z € X:d(x,z)+d(z,y) = d(x,y)}

[52] need not be convex. Also, a convexity space is induced

by an interval operator if and only if it is of arity < 2.

Another important property of interval convexity which is of
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interest to us is Pasch-Peano property (Definition 1.20).

These properties are known to hold for vector spaces. Some

interesting results in this direction are.

Theorem 1.1 [22]. A convexity space of arity two is JHC if

and only if its segment operator satisfies the Peano

property.

Theorem 1.2 [35]. A convexity space of arity two is if

and only if the segment operator of X has the Pasch

property.

Another interesting concept is that of

starshapedness (Definition 1.17). It was proved by Brunn in

1913 [47] that for with standard convexity, the star

center of each set is convex.

Several other aspects of convexity theory has been

studied by many authors. The prominent among them include

the theory of convex geometries [34], ramification property

due to Calder [22] and Bean [17], Prenowits [9] theory of

join spaces linking up with the theory of ordered geometry.
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the theory Bryant-Webster spaces [21] and Eckoff's partition

conjecture [45].

Since 1950s the theory of convexity spaces has

branched and grown into several related theories. An elegant

survey has been done by Van de vel [12] whose work has

been acclaimed as remarkable.

Attempts were also made by Changat, M and

Vijayakumar, A [28] to evaluate the convex invariants of

order and metric convexities of z" and Onn [58] has studied

the Radon number of integer lattice.

Regarding the application part of convexity

theory, interesting problems attempted include the
determination of computational complexity of the

construction of convex hulls and computational complexity

of the evaluation of convex invariants. A bibliography on

digital and computational convexity has been prepared by

Ronse [68] .

CONVEXITY IN GRAPHS

It is natural that the concept of convexity could
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be introduced in graphs also, via its intrinsic metric.

Convexity problems in graphs is an emerging line of research

in metric graph theory and has proved to be quite successful

with respect to applications also, such as facility location

problems, dynamic researching in graphs etc. [54]. i. Several

convexities can be defined in a graph, most widely discussed

being the geodesic convexity [73] and the minimal path

convexity [33] (Definition 1.7). It is obvious that any

m-convex set is d-convex. Introducing the notion of an

interval function of a graph, Mulder [53] observed that

geodesic interval in a graph need not be convex. He called

a graph to be interval monotone if all its intervals are

convex.

Edelman and Jamison [34] studied the convexity

spaces satisfying the antiexchange law (Definition 1.15) and

are calied the convex geometries or antimatroids. It was

observed that antimatroids are precisely convex structures

satisfying the Krein-Milman property that, every convex set
.  .. its extreme points. They investigated
IS the convex hull or

^ rti-anhs also and proved that,this property for grapns
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Theorem 1.3 [38], G is chordal if and only if the minimal

path of convexity is a convex geometry.

Theorem 1.4 [38]. G is a disjoint union of Ptolemaic graphs

if only if the geodesic convexity is a convex geometry.

Theorem 1.5 [44]. G is a connected block graph if and only

if the connected alignment is a convex geometry.

Bandelt [14] studied separation properties in graphs and

Chepoi [29] gave a characterization of and JHC in a

bipartite graphs. The geodesic convexity and the

m-convexity being defined in terms of intervals, they have

some interesting properties.

Theorem 1.6 [12]. A connected graph with Pasch property is

interval monotone.

Theorem 1.7 [12]- a connected graph is with respect

to geodesic convexity, then it is interval monotone.

Theorem 1.8 [12]. Ptolemaic graphs with respect to geodesic

convexity are interval monotone.

Theorem 1.9 [14]. The geodesic convexity of a bipartite
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graph G is S if and only if G embeds isometrically in a
3

hypercube.

Considerable attempts have been made by

Bandelt [14], [15], Duchet [32] and Farber-Jamison [38] to

evaluate the convexity parameters in graphs. Some

interesting results in this context are,

Theorem 1.10 [32] Caratheodory number of any graph with

respect to m-convexity is atmost 2.

Theorem 1.11 [33]. Let G = (V,E) be a connected graph with

at least two vertices and suppose the maximum size of a

clique in G is CO . Denote by h(G) and r(G) respectively the

Helly number and the Radon number of the minimal path

convexity of G. Then

|l(G) = «

r(G) = CO + l,if w > 3

^(G) =4 ,if w < 2

It is also proved that the Radon number of the

minimal path conveKity in a triangle free graph 0 is 3 if

and only if the block graph of 0 is a path. It is known
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that the Helly number of a graph with respect to d-convexity

is bounded from below by w (G). Generalizing the results

for chordal graphs and distance hereditary graphs due to

Chepoi [29], Duchet [32] and others, Bandelt and Mulder [15]

proved that h(G) = oj (G) for a dismantlable graph

(Pseudomodular graph). For other related results, see [26]

[36] [37] and [69].

as an attempt towards the classification of graphs

according to the number of nontrivial convex sets,

considerable study has been made by Hebbare [13], [39], [41],

Rao and Hebbare [66] and Batten [16]. They called, the

empty set, singletons, vertices inducing a complete subgraph

and V(G) to be trivial convex sets. A graph is called

(k,w)-convex if it has exactly k nontrivial convex sets and

has clique number «. The (0,2) convex graphs with respect

to the geodesic convexity were called distance convex simple

(d.c.s) graphs [41] and such graphs with respect to

m-convexity were called m-convex simple (m.c.s) graphs by

Changat, M [26]. U is asy to observe that every d.c.s

graph of order p > 4 is a triangle free block. When k=l.
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(k,w)-convex graphs are called uniconvex graphs [40],

Several other interesting results on planar d.c.s graph,

o-convex graphs, (0,3) convex graphs, (1,2) convex graphs

are in [41]. Changat, M [26] while studying m-convex simple

graphs, has proved that, a connected graph G 4 P^, having no

nontrivial cliques is m.c.s if and only if G is

m-self centroidal. Also, a connected graph G is m.c.s. if

and only if G has no nontrivial cliques or clique separator.

In [27] he has proved that a graph G has geodesic iteration

number 1 if and only if G is interval monotone which has

Caratheodory number 2. Also, a graph G is interval monotone

with respect to m-convexity if and only if the minimal path
1- ^4: n m-inCG) is 1. Some other results areiteration number of G, minv^^'; is

in [24] and [25].

We have thus given a survey of results on the

theory of convexity spaces and convexity in graphs, related

to the results mentioned in this thesis.

1.3 GIST OF THE THESIS

This thesis consists of five chapters including
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this introductory one, where in we have given some basic

definitions and a survey of results on the theory of

abstract convexity spaces and convexity in graphs.

In the second chapter, we study the properties of

convex simple graphs, interval monotone graphs and totally

non interval monotone graphs. It is observed that, two

aiven by Hebbare [41] are notnecessary conditions givcii

sufficient. some of the important observations included in

this chapter are,

1. It is obvious that d.c.s. graphs are triangle free

and t.n.i.m. But, the converse is not true. We have given

two different methods of constructing a triangle free

t.n.i.m. graph having exactly k non trivial convex sets.

2. Regarding the separation properties of d.c.s and

t.n.i.m graphs, it is found that they are half space free.

3. For d.c.s graph, the convex invariants are,

h(G) = c(0) = r(G) = 2 and e(G) = 3.

Chordal graphs with m-convexity has Brunn s

1.U if is not true in general,property, though it is
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5, Thsir© is no umconvGX Qirsphs with irsspoct to

m-convexity.

g  jjj (3iff©ir©nc6 with th© obs©irv©tion in©ntion©ci in 1/

with m-conv©xity, for a triangl© fre©, 2-conn©ct©d graph to

be k-conv©x, it is necessary that there is an 'n' such that

(n-1) (n+2)/2 < k < 2^-2.

7  For any graph with geodesic convexity,if its

geodetic iteration number is 1 then it is interval monotone

and JHC. Converse need not be true. But, if G is a JHC,

interval monotone graph, we can give a bound for gin(S) for
,  , 109 IS1 ^ 1

S c V(G). In fact, gin(S) < k where k-1 <

8. If G is a geodetic, JHC graph then gin(G) = 1

The third chapter deals mainly with the concept of

solvable trees, which was introduced to answer the problem,

of finding the smallest d.c.s. graph containing a given tree

of order atleast four. We say that a tree T is solvable if

there is a planar d.c.s. graph G such that T is isomorphic

to a spanning tree of 0. We prove that,

9. Any tree of order atmost nine is solvable. The bound
.  We note that there are graphs of

for the order is sharp.
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order 10 which are not solvable.

10. Trees of diameter three# five and trees of

diameter four whose central vertex has even degree are

solvable. There are trees of diameter six which are not

solvable.

A similar problem was posed, with respect to

m-convex simple graphs and found that,

11. The size of the smallest m-convex simple graph

containing a tree T satisfies, p-l+m/2 < q < P+m-2 where

p = |v(T)| and m is the number of pendent vertices of T.

We further study the convexity properties of

product of graphs and have,

12 °i °2 graphs then x is not

SO .

13 If G and G^ are connected, triangle free graphs,

G. * K, or K for i = 1.2, then G^ x G^ is m-convex simple.

If G is m.c.s. and is any triangle free graph.
1  1

14

then x G^ is m.c.s.

We conclude this chapter with a discussion on the
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centers of d.c.s. graphs.

15. If G is a planar d.c.s. graph, then 0 is self

centered if diain (G) - 2 and diain(G) — 2rad(G) or 2rad(G)''l,

if diain(G) > 2, C(G) is isomorphic to or according as

diam(G) = 2rad(G) or 2rad(G)-l.

In the fourth chapter, we initiate the study of

convexity for the edge set of a graph, which is less studied

earlier. He define S c E(G) to be cyclically convex if it

contains all edges comprising a cycle whenever it contains

all but one edges of this cycle. This convexity space

(G,8) satisfies the exchange law also and hence is a

matroid. Further,

16. The arity of (0,8) is 1 if 0 is a tree and is one

less than the size of the largest chordless cycle in 0,

otherwise.

Thus, (0,8) is not an interval convexity space in

general. The convex invariants have also been evaluated.

17 If 0 is a connected graph of order p, Helly number

h(G) = p-1.
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18. Caratheodory number C(G) = 1 if G is a tree

= circ(G)-l, otherwise.

19. Radon number of (G/S), r-(G) = p-1.

20 For a connected graph G, the exchange number,
Kb

e(G) = 2 if G is a tree or a cycle.

= max {circ(G-v)/v e V(G)}, otherwise.

By generalizing the Pasch-Peano properties to any

convexity space, we have obtained a forbidden subgraph

characterization also.

21. The convexity space (G,8) is a Pasch space if and

only if K -X is not an induced subgraph of G.
4

22 The convexity space (G,«) is a Peano space if and

only if G does not contain K^-x as a subgraph.

Though, for a tnatroid the Peano property implies

Pasch, the converse need not be true by the observations

made above.

The last chapter deals with some problems on the

* d" The motivation for this study is theH-convexity of R •

rin-i A symmetrically generated
problem posed in L

not be JHC or S . Van de Vel asked as toH-convexity need nor 4
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whether each synunetric H-convexity of R (n>2) is of arity

two ? We have obtained
3

23. The arity of the H-convexity in R symmetrically

generated by a family of linear functionals corresponding to

a family of planes intersecting in a line, is two.

24. An example of an H-convexity in of infinite

arity .

25. The H-convexity symmetrically generated by a

family ̂  of linear functionals from R^-^ R, is if and
only if for any two intersecting convex straight lines, the

plane dftikermined by these lines is convex.

26. An example of an H-convexity which is neither JHC

nor S but is Pasch and Peano and hence not of arity two.
4

The study initiated in thesis is definitely far

from being complete. The last section of this chapter is a

list of problems that remains to be tackled, which include

some interesting problems posed by others also.

We have included as an appendix, a counter example
rhana [23] on the centers of chordal

to a conjecture of Chang l"J

graphs.


