erapged II

CONVEX SIMPLE GRAPHS AND INTERVAL MONOTONICITY

In this chapter, we focus on the properties of convex simple graphs. Though any distance convex simple graph is totally non interval monotone, the converse is not true. We give two methods of constructing a triangle free t.n.i.m. graph having exactly k non trivial convex sets. It is also observed that d.c.s graphs and t.n.i.m. graphs are halfspace free. However, with respect to minimal path convexity it is seen that there are no uniconvex graphs and that, values of k for which a k-convex graph exists should satisfy certain conditions. We further concentrate on the iteration number of an interval monotone, JHC graph and also a geodesic, JHC graph.
2.1 DISTANCE CONVEX SIMPLE GRAPHS AND TOTALLY NON INTERVAL MONOTONE GRAPHS

Let us first consider the two necessary conditions for a graph G of order at least five to be distance convex simple.

Theorem 2.1 [41]. A d.c.s graph G of order at least five satisfies the following conditions.
Cl. For any 2-path $u-v-w$ in G, there is an x in V such that < $\{u, v, w, x\}>$ is a chordless 4-cycle of G.

C2. For any 4-cycle $u-v-w-x-u$ in G there is a y in G such that y is adjacent to either u and w or v and x.
Q_{3}-graph of the 3 -cube satisfies $C 1$ but is not d.c.s. We first observe that $C 1$ and $C 2$ are not sufficient conditions. The graph in Fig.2.1 satisfies both the conditions but is not d.c.s.

G:

Fig. 2.1

In $G,\{a, b, c, d, e\}$ is a convex set.

All connected graphs of order aftmost three, $K_{m, n}$ for $m, n>1 . \bar{K}_{n_{1}}+\bar{K}_{n_{2}}+\ldots+\bar{K}_{n_{r}}, n_{i}>2$ for $i=1,2, \ldots, r$ are examples of d.c.s graphs.

The following theorem gives another class of d.c.s graphs.

Theorem 2.2. [13] Let G be a triangle free graph. Then the graph $D_{\lambda}(G)$ obtained by taking λ copies; $G_{1}, G_{2}, \ldots, G_{\lambda}$ of G and joining each vertex u_{i} in G_{i} to the neighbours of the corresponding vertex u_{j} in G_{j} for $i, j=1,2, \ldots, \lambda$, is a d.c.s graph for $\lambda>1$.

The graph $D_{2}\left(C_{5}\right)$ is shown in Fig. 2.2 .

Fig. 2.2

The following theorems from [41] are of much use to us.

Theorem 2.3. Let G be a planar connected graph of order at least four. Then the following are equivalent.

1. G is d.c.s.
2. G is a block without an induced subgraph isomorphic to a cycle C_{3}, C_{n} for $n>4$ or a 6-cycle with exactly one bichord.
3. For each vertex u of degree at least three, there is a unique vertex u^{\prime} in G such that $N(u)=N\left(u^{\prime}\right)$.

Two such vertices u and u^{\prime} are called partners.

Theorem 2.4. A d.c.s graph $G(p, q)$ is $p l a n a r$ if and only if $q=2 p-4$.

Theorem 2.5. [66] Let G be a connected, planar graph of order $p \geq 4$ and $G Q_{3}$. Then G is a d.c.s graph if and only if it satisfies Cl.

Interval monotone graphs [53] are those for which
all its intervals are convex. Trees, hypercubes, Ptolemaic graphs are examples of interval monotone graphs. A graph is totally noninterval monotone (t.n.i.m) if no nontrivial geodesic interval is convex. It is clear that $I(a, b)$ is convex whenever $a=b, a$ adjacent to b or $I(a, b)=V(G)$. These are called the trivial geodesic intervals.

Note 2.1. A t.n.i.m. graph satisfies the conditions $C l$ and C2. Otherwise, if $u-v-w$ is a 2-path in G such that there is not an x adjacent to u and w, then $I(u, w)=\{u, v, w\}$ will be a convex interval. Similarly, if C2 is not satisfied, then the cycle $u-v-w-x-u$ gives the convex interval

$$
I(u, w)=\{u, v, w, x\}
$$

However, the conditions $C 1$ and $C 2$ are not sufficient for a graph to be t.n.i.m. In the graph of Fig. 2.1, $I(a, e)=\{a, b, c, d, e\}$ is a convex interval.

It is clear that d.c.s graphs are triangle free and t.n.i.m. But the converse is not true. The graph G of Fig.2.3 is a triangle free t.n.i.m. graph which is not d.c.s.

Fig 2.3

In G, the only nontrivial convex set is $\{a, b, c, d, e, f\}$ and it is not an interval. That is, G is a uniconvex graph in which no nontrivial interval is convex.

Since any connected graph of order atmost five which satisfies $C 1$ and $C 2$ can be expressed as an interval
$\left(C_{4}\right.$ and $K_{2,3}$, which are the only such graphs, can be expressed as interval) a convex set in a trianglefree t.n.i.m. graph will contain at least six vertices.

However, for a triangle free planar graph G, the following theorem holds.

Theorem 2.6. Let G be a triangle free planar graph. Then G is d.c.s if and only if it is t.n.i.m.

Proof: If G is d.c.s then it is t.n.i.m trivially. Now, let it be a triangle free planar t.n.i.m graph. Then $G \neq Q_{3}$ (the 3 -cube) because Q_{3} is not t.n.i.m. Now by theorem 2.4, G is d.c.s..

We shall now give two methods of constructing a triangle free, t.n.i.m graph, having exactly k non trivial convex sets.

CONSTRUCTION 1. Let G be a d.c.s graph with $I(a, b) \neq V(G)$ for any $a, b \in V(G)$ and let G_{1}, G_{2} and G_{3} be three copies of G. Join each vertex of G_{1} to the corresponding vertices of G_{2} and G_{3} and each vertex of G_{2} to the neighbours of
corresponding vertices of G_{3}. The resulting graph is denoted by G^{1}.

Remark $2.1 G^{l}$ can also be obtained by taking $K_{2} \times G$ and then multiplying all the vertices of the copy of G corresponding to one of the vertices of K_{2}. Also if $u . v \in G$ and u_{i}, v_{i} are the vertices corresponding to u and v, for $i=1,2,3$. Then

$$
\begin{aligned}
& d\left(u_{i}, v_{i}\right)=d(u, v) \text { for } i=1,2,3 \\
& d\left(u_{1}, v_{2}\right)=d\left(u_{1}, v_{3}\right)=d\left(u_{1}, v_{1}\right)+1
\end{aligned}
$$

The graphs induced by $G_{1} \cup G_{2}$ and $G_{1} \bigcup_{G_{3}}$ are isomorphic to $G \times K_{2}$ and that induced by $G_{2} \cup G_{3}$ is $D_{2}(G)$.

Claim: G^{1} is having exactly one convex set and it is $V\left(G_{1}\right)$.
It is enough to prove that $\operatorname{Co}(\{u, v\})=V\left(G_{1}\right)$ whenever $u, v \in V\left(G_{1}\right)$ and $\operatorname{Co}(\{u, v\})=V\left(G^{l}\right)$ if one of u and v is in G_{2} or G_{3}.

Case 1: Let $u_{1}, v_{1} \in V\left(G_{1}\right)$ be non adjacent vertices. Let $w \in G$. Then $d\left(u_{1}, w_{2}\right)=d\left(u_{1}, w_{1}\right)+1$ where w_{i} is the corresponding vertex of w in G_{i} for $i=1,2,3$.
Also $d\left(v_{1}, w_{2}\right)=d\left(v_{1}, w_{1}\right)+1$. Hence,

$$
d\left(u_{1}, v_{1}\right) \leq d\left(u_{1}, w_{1}\right)+d\left(v_{1}, w_{1}\right)<d\left(u_{1}, w_{2}\right)+d\left(v_{1}, w_{2}\right)+d\left(v_{1}, w_{2}\right) .
$$

Hence, w_{2} is not on a $u_{1}-v_{1}$ shortest path. Now, because G is d.c.s no nontrivial subset of G_{1} is convex. Hence, $\operatorname{Co}\left(\left\{u_{1}, v_{1}\right\}\right)=v\left(G_{1}\right)$.

Case 2. If $u, v \in G_{2} \cup G_{3}$, then by theorem $1.2, G_{2} \cup G_{3}$ induce a d.c.s graph and hence $V\left(G_{1}\right), V\left(G_{2}\right) \subset \operatorname{Co}\{u, v\}$. Now, for any $w \in G, w_{2}, w_{3} \in \operatorname{Co}(\{u, v\})$, where w_{2}, w_{3} are copies of w in G_{2} and G_{3}. w_{1} is on a shortest $w_{2}-w_{3}$ path and hence $w \in \operatorname{Co}\left(\left\{w_{2}, w_{3}\right\}\right) \subset \operatorname{Co}(\{u . v\})$. Therefore $\operatorname{Co}(\{u, v\})=V\left(G^{l}\right)$.

Case 3. Let $u_{1} \in G_{1}$ and $v_{2} \in G_{2}$ (similarly when $v_{3} \in G_{3}$). Then $u_{2}, v_{1} \in \operatorname{Co}\left(\left\{u_{1}, v_{2}\right\}\right)$. Now, since $N\left(u_{2}\right)=N\left(u_{3}\right), u_{3}$ is on a shortest $u_{1}-v_{2}$ path. That is $u_{2} ; u_{3} \in \operatorname{Co}\left(\left\{u_{1}, v_{2}\right\}\right)$. Then, as in case 2 , Co $\left(\left\{u_{1}, v_{2}\right\}\right)=v\left(G^{1}\right)$.
Now, since $V\left(G_{1}\right)$ cannot be expressed as an interval, G^{1} is t.n.i.m. Taking G^{1} in the place of G, construct G^{2} in which $V\left(G_{1}^{1}\right)$ and $V\left(G_{1}\right)$ are the only convex sets. Proceeding like this we get G^{k} in which $V\left(G_{1}\right), V\left(G_{1}^{l}\right), V\left(G_{1}^{2}\right), \ldots, V\left(G_{1}^{k-1}\right)$ are the only convex sets.

CONSTRUCTION 2. Let G be a d.c.s graph in which $I(a, b) \neq V(G)$ for any $a, b \in V(G)$. Replace each vertex of a star $K_{1, k}$ by a copy of G. Join each vertex of the copy G of G corresponding to the center of $K_{1, k}$ to the corresponding vertices of the other copies. Now, replace each vertex of $\mathbf{G}_{\mathbf{u}}$ by a pair of nonadjacent vertices. The graph G so obtained is a triangle free t.n.i.m graph with exactly k convex sets.

Remark 2.2. In general, the k-convex graphs obtained by Construction 1 and Construction 2 are not isomorphic. In Construction 1 the convex sets of G^{k} form an ascending chain $V\left(G_{1}\right) \subset V\left(G_{1}^{1}\right) \subset \ldots \subset V\left(G_{1}^{k-1}\right)$. But in Construction 2 , the k convex sets are disjoint. However, when $k=1$ both the constructions give the same graph.

We shall now discuss the separation properties (Definition 1.16) of d.c.s graphs. Any graph trivially satisfies S_{1} property. The graphs in Fig. 2.4 indicate that there are graphs satisfying S_{i} but not S_{i+1}, for $i=1,2,3$.
$G_{1}:$
$G_{2}:$

Fig 2.4
G_{1} is not $S_{2} . G_{2}$ is S_{2} but not S_{3}. Here, there is no halfspace separating the convex set $\left\{x_{1}, x_{2}\right\}$ and the vertex u. G_{3} is S_{3} but not S_{4}. The convex sets $\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{3}, v_{4}\right\}$ are disjoint convex sets which cannot be separated by halfspaces.

There are graphs for which $V(G) \backslash C$ is not convex for any convex set C. We make the following.

Definition 2.1. A graph G is halfspace free if no subset of $V(G)$ is a halfspace.

Theorem 2.7. A connected triangle free graph G of order at least five is halfspace free if it satisfies the conditions C1 and C2.

Proof. Let G be a connected triangle free graph satisfying $C 1$ and $C 2$. Let $C \subset V(G)$ be a convex subset. To prove that $V(G) \backslash C$ is not convex.

$$
\text { Let } u \in V(G) \backslash C, v \in V(G) \backslash C \text { and } u v \in E(G)
$$

Let $w \in V(G), w \neq v$ and $w u \in E(G)$. Note that such a vertex exist because G is of order at least five and it satisfies $C 1$. Now $w-u-v$ is a 2 -path and by $C l$ there is an x in $V(G)$ which is adjacent to w and v (see Fig.2.5)

Fig. 2.5.
Now $x \in V(G) \backslash C$ because C is convex, $V \in V(G) \backslash C$ and $v \in \operatorname{Co}(\{u, x\})$.
If $w \in V(G) \backslash C$, it is not convex because $u \in \operatorname{Co}(\{w, v\})$, but $u \in C$. So let $w \in C$ and $x \in V(G) \backslash C$.
Now, $w-u-v-x-w$ is a 4 -cycle in G and by C_{2}, there is a vertex y adjacent to either w and v or u and x.

Let y be adjacent to w and v. Then $y \notin C$ because in that case $v \in \operatorname{Co}(\{u, y\}) \subset C$ which is a contradiction. Hence, $v \in V(G) \backslash C$. Then, since $w \in C o\{y, x\}$ and $w \in C, V(G) \backslash C$ is not convex.

Similar is the case when y is adjacent to u and x. Hence, for any convex set $C, V(G) \backslash C$ is not convex. That is, there is no halfspace in G.

Corollary. Distance convex simple graphs and t.n.i.m graphs are halfspace free.

Note 2.2. Neither $C 1$ nor $C 2$ is necessary for a graph to be halfspace free. The graph G_{1} of Fig. 2.6 does not satisfy Cl , and G_{2} of Fig.2.6 does not satisfy C 2 , but both are halfspace free.

Fig 2.6
The convex invariant could easily be determined for d.c.s graphs. If G is a d.c.s graph, then any set s of three vertices contains a pair u.v of non adjacent vertices and $\operatorname{Co}(\{u, v\})=V(G)$. This observation leads to

Theorem 2.8. For a d.c.s graph $G, h(G)=c(G)=r(G)=2$ and $e(G)=3$.

It is interesting to observe the star center (Definition 1.17) of a d.c.s graph. It is known that

Theorem 2.9. [12]. A convex structure with Caratheodory number 2 is JHC.

Theorem 2.10 [12]. A JHC convex structure has the Brunn's property.

By theorems 2.8, 2.9 and 2.10 it follows that d.c.s graphs satisfies Bran's property with respect to the convex hull operator. But when we consider the geodesic interval operator, this will not be true.

For example, the graph G in Fig. 2.7 is d.c.s.

G:

Fig. 2.7

Let $S=\{1,2,3,4\}, \operatorname{Ker}(S)$ is the set $\{2,4\}$ which is disconnected.
2.2. MINIMAL PATH CONVEXITY AND m-CONVEX SIMPLE GRAPHS In this section by convex sets we mean only m-convex sets and by intervals, only minimal path intervals. It is known (Theorem 1.10) that for any graph G, coG) is at
most 2 and has JHC property. Hence, by theorem 2.10, G has the Brunn's property. But, if $\operatorname{Ker}(S)$ is taken with respect to the minimal path interval operator, this is not true. Consider the graph G in Fig. 2.8

Fig. 2.8
In G, let $S=\{x, u, v, w, z, y\}$. It can be seen that $x, y \in \operatorname{Ker}(S)$. But u, which is on a chordless $x-y$ path is not in Ker(s).

However, the following theorem gives a class of graphs for which the Brunn's property holds with respect to minimal path interval.

Theorem 2.11. Let G be a chordal graph and let, $\operatorname{Ker}(S)=\{z \in S: I(z, s) \subset S\}$ for every $s \in S\}$ for $S \subset V(G)$. Then Ker(S) is convex.

Proof: Let $x, y \in \operatorname{Ker}(S)$, and z is on some $x-y$ chorales path where $S \subset V(G)$.

To prove that $I(x, y) \subset \operatorname{Ker}(S)$ where, $I(x, y)=\{z: z$ is on some chord less $x-y$ path $\}$

Since $x, y \in \operatorname{Ker}(S), I(x, s) \subset S, I(y, s) \subset S$, for every $s \in S$. Let $z \in I(x, y)$. To prove that $I(z, s) \subset S$ for every $s \in S$. Assume without loss of generality that z is adjacent to x. Let $P_{1}=z-a_{1}-a_{2}-\ldots-a_{n}-s$ be an $z-s$ chordless path and

If $x-z-a_{1}-a_{2}-\ldots-a_{n}-s$ is chordless, then clearly $z, a, \ldots, a_{n}, s \in s$.
Similarly when $y-b_{k}-\ldots-b_{1}-z-a_{1}-\ldots-a_{n}-z$ is chordless path. So assume that these are having chords. If ℓ is such that a_{ℓ} is adjacent to x, (Note that one end vertex of any chord of this path is x, because $z-a_{1}-a_{2}-\ldots-a_{n}-s$ is chordless). Then $x-a_{\ell}-a_{\ell-1} \ldots-a_{1}-z-x$ is a cycle in G. If $\ell>1$ this is a cycle of length at least four and hence has a chord. Thus we can see that x is adjacent to a_{1}. similarly if b_{i} is
adjacent to a_{m} for some $m=1$, we can see that a_{1} adjacent to b_{1} (see Fig.2.9).

Fig 2.9

Now if $P_{3}=x_{a}^{-a_{1}}-\ldots-a_{n}-s$ is a chordless path or $P_{4}=y-b_{k-1} \ldots b_{1}-a_{1} \ldots a_{n}^{-s}$ is a chordless path, $a_{1}, \ldots, a_{n} \in s$. As above, if x is adjacent to a_{ℓ} for some $\ell>1$ then x is adjacent to a_{2}. Also if b_{i} is adjacent to a_{m} for some $m>1, a_{2}$ will be adjacent to some vertex on $b_{1}-b_{2} \ldots b_{i}$. Let b_{j} be the first vertex on $b_{1}-b_{2}-\ldots-b_{i}$ which is adjacent to a_{2}. (see Fig.2.10) .

Fig. 2.10 .
Then $x-z-b_{1}-b_{2}-\ldots-b_{j}-a_{2}-x$ will be a chordless cycle of length at least four. Hence either P_{3} or P_{4} is chordless. Hence $l(z, s) \subset S$ and therefore $z \in \operatorname{Ker}(S)$.
m-convex simple (m.c.s) graphs are those whose only nontrivial convex subsets are the null set, singletons, pairs of adjacent vertices and the whole set $V(G)$. The following theorem gives a necessary and sufficient condition for a graph to be m.c.s.

Theorem 2.12. [26]. A graph is m.c.s if and only if it has no nontrivial clique or clique separator.

It is clear that d.c.s graphs are m.c.s. But the converse is not true. For example, the graph in Fig. 2.11 is an m.c.s graph which is not d.c.s.

Fig. 2.11
By theorem 2.12 it is clear that G is an m.c.s graph. But it is not d.c.s because $\{5,6,7\}$ is a nontrivial d-convex set. The question as to whether there exist for any given k, a k-convex graph which is triangle free and totally non interval monotone, with respect to m-convexity also, lead us to following theorems.

Theorem 2.13. There is no uniconvex graph.

Proof: Let G be a graph having a nontrivial convex subset. Then by theorem $2.12, G$ contains a clique separator s. Let
$C_{1}, C_{2}, \ldots, C_{n}$ be components of $G \backslash S$. Clearly $n \geq 2$. Then $C_{i} U s$ is convex in G because any chordless path connecting vertices of $C_{i} U S$ will be contained in $\left\langle C_{i} U S\right\rangle$. Note that since S is complete, any path containing a vertex not in $C_{i} U S$ will have a chord. Thus the number of convex sets is at least two.

We call a convex set C to be a minimal nontrivial convex subset if no proper subset of C of cardinality at least three is convex.

The following theorem specify the condition on k which is necessary for a graph to be k-convex.

Theorem 2.14. Let G be a-convex, triangle free, 2-connected graph. Then there is an ' n ' such that $(n-1)(n+2) / 2 \leq k \leq 2^{n}-2$.

Proof: Let $C_{1}, C_{2}, \ldots, C_{n}$ be minimal nontrivial subsets of G. Hence $C_{i} \cap C_{j}$ contains at most two vertices for $i \neq j$. Otherwise $C_{i} \cap C_{j}$ will be a nontrivial convex set which is a proper subset of C_{i}. Let $C_{i} \cap C_{j}=S$ with $|S|=2$.

Claim 1. S is a clique separator.
Let $S=\{x, y\}$. Then,

$$
\operatorname{Co}(S) \subset C_{i} \cap C_{j} . \quad \text { If } x \text { is not adjacent to } y, C o(S)
$$

will be a nontrivial convex subset properly contained in C_{i}. Hence x is adjacent to y, that is S is a clique.

Now to prove that $G \backslash S$ is disconnected. If not, each pair of vertices in $G \backslash S$ is connected by a path. In particular, each vertex of $C_{i} \backslash S$ is connected to each vertex of $C_{j} \backslash S$ by some path in $G \backslash S$. Let $C_{i} \in C_{i} \backslash S$ and $c_{j} \in C_{j} \backslash S$. Let $c_{i}-u_{1}-u_{2} \ldots u_{\ell}-c_{j}$ be a chordless $c_{i}{ }^{-c_{j}}$ path in $G \backslash S$. Assume without loss of generality that c_{i} is so chosen that $u_{k} \notin C_{i}$, for $k=1 \ldots \ell$. Since G is triangle free c_{i} is not adjacent to at least one vertex of s. Let it be x. Consider the path joining c_{i} and x which contain c_{j} on it. It is clear that some subset of this will induce a chord less C_{i} - x path containing a vertex in $C_{j} S$. This is not possible because C_{i} is convex. Hence $G \backslash S$ is disconnected. Therefore, if $C_{i} \cap C_{j}=S$, any clique of size at least two, then S is a separator set.

Now, let H be a graph with,

$$
V(H)=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\} \text { and } C_{i} \text { is adjacent to } C_{j}, \text { if }
$$

$C_{i} \cap C_{j}$ is a clique separator.

Claim: H is a block graph.

If not there will be a block B in H and $C_{i}, C_{j} \in B$ such that C_{i} is not adjacent to C_{j} in H. Assume without loss of generality that $d\left(C_{i}, C_{j}\right)=2$ and let $i=1, j=3$. Let $C_{1}-C_{2}-C_{3}$ be a path and since these are vertices of a block, there will be another path $C_{3}-C_{4}-\ldots-C_{i}-C_{1}$ connecting C_{3} and C_{1}.

Let $C_{1} \cap C_{2}=S_{1}, C_{2} \cap C_{3}=s_{3} \ldots C_{i} \cap S_{1}=s_{i}$. Note that $S_{1} \not \not S_{2}$. Otherwise $S_{1}=S_{2} \subset C_{1} \cap C_{3}$ and hence C_{1} will be adjacent to C_{3} which is a contradiction. Now, since G is triangle free, we get an $x \in S_{1}, y \in S_{2}$ such that x is not adjacent to Y. Note that $x, y \in C_{2}$. Assume without loss of generality that $S_{1} \neq S_{i}$ and $S_{2} \neq S_{3}$.
[If $S_{1}=S_{i}=S_{i-1}=\ldots,=s_{3}, C_{1} \cap C_{2}=s_{3}, C_{3} \cap C_{4}=s_{3}$ and C_{1} will be adjacent to C_{3}. similarly when $S_{2}=S_{3}=\ldots$ $\left.\ldots=S_{i}.\right]$

Now because $c_{1} \cap C_{i} \neq \phi, C_{i} \cap C_{i-1} \neq \phi, \ldots c_{3} \cap c_{2} \neq \phi$ and $x \in C_{1}$ and $y \in C_{2}$, we get an $x-y$ path through C_{i}, C_{i-1}, \ldots \ldots, C_{3}, C_{2} and hence a chordless path joining x and y containing vertices of these sets. That is C_{2} is not convex, which is a contradiction. Hence H is a block graph.

Now observe that if C_{1} and C_{2} are convex and $C_{1} \cap C_{2}=S$, a clique separator, $C_{1} \cup C_{2}$ is convex. Hence, the convex sets of G are those corresponding to the connected subsets of H. It is known that the number of connected sets of a block graph is minimum when it is a path and is a maximum when it is a complete graph. The number of connected sets other than the whole set is $(n-1)(n+2) / 2$ when it is a path and it is $2^{n}-2$ when it is a complete graph. Hence the number of connected sets in H lies between $(n-1)(n+2) / 2$ and $2^{n}-2$. Therefore, G is a k-convex graph implies that there is an n such that $(n-1)(n+2) / 2 \leq k \leq 2^{n}-2$

$$
0-2-0
$$

Illustration: If $n=1$, then $k=0$ and G is an m.c.s. graph.

If $n=2$, then $k=2$. So, there is no uniconvex graph.
If $n=3$, then $5 \leq k \leq 6$, so there is no 3 -convex graph or 4-convex graph.
If $n=4$, then $9 \leq k \leq 14$, so there is no 7 -convex or 8-convex graphs.

Remark 2.3. In the theorem 2.14, for any $C_{i} \in H$, if $N\left(C_{i}\right)$ consists of m pairwise nonadjacent vertices, then the subgraph of G induced by C_{i} consists of at least m-edges. This is because if $C_{1} \ldots C_{n}$ are the neighbours of C_{i} which are pairwise nonadjacent, then in G, $c_{i} \cap c_{k} \neq s_{k} \simeq K_{2}$ for $k=1, \ldots, m$ and $s_{k} \neq s_{\ell}$ for $k \neq \ell$

COROLLARY: Let H be a block graph of order p. Then there is a t.n.i.m graph G^{\prime} such that G^{\prime} is k-convex where k is the number of convex subsets of H other than the null set and the whole set.

Proof: Let $G \simeq K_{n, n} n \geq 3$. Take n to be sufficiently large so that if $C_{1}, C_{2}, \ldots, C_{m}$ are the vertices of H as in the $V(H)=\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$. Now Remark 2.3, then $m \leq n$.
form G^{\prime} as follows. Let $G_{1}, G_{2}, \ldots, G_{p}$ be p copies of G. Identify an edge of G_{i} with the corresponding edge of G_{j}. if and only if C_{i} is adjacent to C_{j} in H. That is, $G_{i} \cap G_{j} \simeq K_{2}$ in G^{\prime} if C_{i} is adjacent to C_{j} in H. Now, the nontrivial convex sets of G^{\prime} are those corresponding to the convex sets of H different from the null set and the whole set.

Now we prove that none of these is an interval.

If $a, b \in G_{i}$ for some i, then, $I(a, b)$ cannot be convex. Assume that $a \in G_{1}, b \in G_{2}$. Then any path connecting a and b contain the vertices of a clique separator s where $s \subset V\left(G_{1}\right)$. Let V_{1} and V_{2} be the bipartition of $V(G)$. Let $V_{1,1}$ and $V_{1,2}$ be the corresponding sets in $V\left(G_{1}\right)$. Let $a \in V_{1,1}$ (similarly when $a \in V_{1,2}$). Let $a_{1} \in V_{1,1} \backslash(S U\{a\})$. Such a vertex exist because $S \cap v_{1,1}$ is a singleton and $\left|v_{1,1}\right| \geq 3$.

Claim: $a_{1} \notin I(a, b)$.
If $a-b_{1}-a_{1}-b_{2}-a_{2} \ldots-b$ is an $a-b$ path then $a-b_{2}$ is a chord. Hence, there does not exist a
a_{1}. Hence no nontrivial interval is convex

Illustration:

H:

G:

Fig. 2.12

2.3. ITERATION NUMBER

Minimal path iteration number of a graph $G, \min (G)$
[27] is a concept analogous to geodetic iteration number (Definition 1.11). It is obtained in a similar manner by replacing the geodetic interval operator by the minimal path interval operator.
sequential join of $k+1$ copies of \bar{K}_{2}, is a graph which is
both d.c.s and m.c.s and both its minimal path iteration number and geodetic iteration number is k.

We know that the Caratheodory number of any graph with m-convexity is aftmost 2 and hence JHC. In addition, if G is interval monotone with respect to m-convexity,
$\min (G)=1$ and conversely.
However, in the case of graphs with geodesic convexity it is necessary that G should be interval monotone and JHC in order that $\operatorname{gin}(G)=1$. But, it is not sufficient (See Fig.2.13).

Fig. 2.13.

Let $S=\left\{a_{2}, b_{1}, d_{1}\right\}$. Then,

$$
s^{1}=\left\{a_{1}, b_{1}, c_{1}, d_{1}, a_{2}, b_{2}, d_{2}\right\} \text { and } s^{2}=V(G)
$$

Hence gin (G) $\neq 1$.
If G is interval monotone but not JHC, there are graphs G and $S \subset V(G)$ with $|S|=3$ such that gin(S) is large. However, we have,
Theorem 2.15. Let G be a JHC, interval monotone graph and let $S \subset V(G)$. Then g in (S) $\leq k$, where k is such that $k-1<\frac{\log |s|}{\log 2} \leq k$.

Proof: Let $s=\left\{a_{1}, \ldots, a_{n}\right\}$.

$$
\begin{aligned}
& \text { et } s=\left\{a_{1}, \ldots, a_{n}\right. \\
& \text { Let } C_{1}=\operatorname{Co}\left(\left\{a_{1}, \ldots, a^{\prime}[n / 2\rceil\right\}\right) \text { and }
\end{aligned}
$$

$$
c_{2}=\operatorname{co}\left(\left\{a_{\left.\left.\lceil n / 2\rceil+1, \ldots, a_{n}\right\}\right)}\right.\right.
$$

Then $\operatorname{Co}(S)=\operatorname{co}\left(C_{1} \cup C_{2}\right)=U\left\{\operatorname{co}\left(\left\{c_{1}, c_{2}\right\}\right): c_{1} \in C_{1}, c_{2} \in C_{2}\right\}$,
since G is JHC.

$$
\begin{aligned}
& \text { JHC. } \\
& =U\left\{I\left(c_{1}, c_{2}\right): c_{1} \in C_{1}, c_{2} \in C_{2}\right\} \text { because } G \text { is }
\end{aligned}
$$

interval monotone.

$$
\text { Hence } \begin{aligned}
\operatorname{Co}(S) & =U\left\{I\left(c_{1}, c_{2}\right): c_{1}, c_{2} \in c_{1} \cup c_{2}\right\} \\
& =\left(c_{1} \cup c_{2}\right)^{1}
\end{aligned}
$$

Now let $C_{11}=\operatorname{Co}\left(\left\{a_{1}, a_{2}, \ldots, a\lceil n / 4\rceil\right\}\right)$

$$
\begin{aligned}
& C_{12}=\operatorname{Co}\left(\left\{a\lceil n / 4\rceil+1, \cdots, a_{\lceil n / 2\rceil}\right\}\right) \\
& C_{21}=\operatorname{Co}\left(\left\{a\lceil n / 2\rceil+1, \ldots, a_{\lceil 3 n / 4}\right\}\right) \\
& C_{22}=\operatorname{Co}\left(\left\{a\lceil 3 n / 4\rceil+1, \cdots, a_{n}\right\}\right)
\end{aligned}
$$

Then $C_{1}=\operatorname{Co}\left(C_{11} \cup C_{12}\right)$ and $C_{2}=\operatorname{Co}\left(C_{21} \cup C_{22}\right)$. Then as above, $C_{1}=\left(C_{11} \cup C_{12}\right)^{1}$ and $C_{2}=\left(C_{21} \cup C_{22}\right)^{1}$

$$
\begin{aligned}
& \text { Hence } C o(s)=\left(\left(c_{11} \cup c_{12}\right)^{1} \cup\left(c_{21} \cup c_{22}\right)^{1}\right)^{1} \\
& =\left(c_{11} \cup c_{12} \cup c_{21} \cup c_{22}\right)^{2} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.=\left(\operatorname{Co}\left(\left\{a_{1}, \ldots, a a_{n / 2}\right\rceil^{\}}\right\}\right) \cup \operatorname{Co}\left(\left\{a^{\lceil n} / 2^{2}\right\rceil+1^{\prime} \ldots,{ }^{a}\lceil n / 2\rceil\right\}\right) U \ldots\right\}^{2}
\end{aligned}
$$

Proceeding like this,

$$
\begin{aligned}
& \operatorname{Co}(S)=\left(\operatorname{Cos} a_{1}, \ldots, a_{\left\lceil n / 2^{k}\right\rceil}\right\} U \operatorname{Co\{ a}\left\lceil n / 2^{k}\right\rceil+1, \ldots a_{\left\lceil n / 2^{k-1}\right\rceil} U \\
& \ldots U\left\{a_{\left.\left.\left\lceil\left(2^{k}-1\right) n / 2^{k}\right\rceil+1^{\prime} a_{n}\right\}\right)^{k}, ~}^{\text {m }}\right.
\end{aligned}
$$

Now, When $\left\lceil\mathrm{n} / 2^{\mathrm{k}}\right\rceil=1$
$2^{k-1}<n \leq 2^{k}$ and $\operatorname{Co}\left(a_{1} \cdots a \quad\left[n / 2^{k}\right\rceil\right)=\operatorname{Co}\left(a_{1}\right)=\left\{a_{1}\right\}$
$\operatorname{Co}(S)=\left(\left\{a_{1}\right\} U\left\{a_{2}\right\} \ldots U\left\{a_{n}\right\}\right)^{k}$

$$
=\left(\left\{a_{1} \ldots a_{n}\right\}\right)^{k}=s^{k}
$$

Hence, gin $S \leq k$, where $2^{k-1}<n<2^{k}$. That is $k-1<(\log n / \log 2) \leq k$. That is $k-1<\frac{\log \mid S 1}{\log 2} \leq k$

The following discussion illustrates that there are graphs G and $S \subset V(G)$ such that $g i n(S)=k$ where $2^{k-1}<S \leq 2^{k}$.

Let k be any integer and $n=2^{k}$. Let Q_{n} be the Let $\delta_{i}=\left(x_{1}, \ldots, x_{n}\right)$ where $x_{i}=1$ and $x_{j}=0$ for $j \neq i$ and $\delta_{0}=(0,0, \ldots, 0)$. Then, $d\left(\delta_{i}, \delta_{j}\right)=2$, for $i \neq 0$.

$$
\begin{aligned}
& \text { Let } s=\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right\} \\
& \text { If } \delta_{i, j}=\left(x_{1}, \ldots, x_{n}\right) \text { where } x_{i}=x_{j}=1 \text { and } x_{k}=0 \text { for } \\
& k \neq i, j, \text { then } \delta_{i, j} \text { is adjacent to } \delta_{i} \text { and } \delta_{j}
\end{aligned}
$$

$$
\text { Hence, } s^{1}=\left\{\delta_{0}\right\} \cup s \cup N_{2}\left(\delta_{0}\right)
$$

Now if $\delta_{i, j} \delta_{k, \ell} \in N_{2}\left(\delta_{0}\right)$ be such that $i, j \neq k, \ell$, then $d\left(\delta_{i, j}, \delta_{k, \ell}\right)=4$ and if $A=\{i, j, k, \ell\}$ and $\delta_{A}=\left(x_{1}, \ldots, x_{n}\right)$ where $x_{i}=x_{j}=x_{k}=x_{\ell}=1$ and $x_{m}=0$ for $m \notin A$, then, $\delta_{A} \in I\left(\delta_{i, j}, \delta_{k, 1}\right)$.
Hence, $s^{2}=\left\{\delta_{0}\right\} \cup s \cup N_{2}\left(\delta_{0}\right) \cup N_{3}\left(\delta_{0}\right) \cup N_{4}\left(\delta_{0}\right)$

$$
=\left\{\delta_{0}\right\} \cup s \cup N_{2}\left(\delta_{0}\right) \cup N_{3}\left(\delta_{0}\right) \cup N_{2}\left(\delta_{0}\right)
$$

Similarly, $s^{3}=\left\{\delta_{0}\right\} \cup s \cup\left\{N_{2}\left(\delta_{0}\right) \cup \ldots U N_{2}\left(\delta_{0}\right)\right.$, and

$$
s_{k}=\left\{\delta_{0}\right\} \cup s \cup N_{2}\left(\delta_{0}\right) \cup \ldots U N_{2}\left(\delta_{0}\right)=v\left(Q_{n}\right)
$$

Hence, $\operatorname{gin}(S)=k$.

Note 2.2. If n is such that $2^{k-1}<n<2^{k}$, in the above example,

$$
s^{k-1}=\left\{\delta_{0}\right\} U s \cup N_{2}\left(\delta_{0}\right) \cup \ldots U N_{2}^{k-1}\left(\delta_{0}\right)
$$

and $s^{k}=\left\{\delta_{0}\right\} U s \cup N_{2}\left(\delta_{0}\right) \cup \ldots U N_{2}^{k-1}\left(\delta_{0}\right) \ldots U N_{n}\left(\delta_{0}\right)$.
Therefore if n is such that $2^{k-1}<n \leq 2^{k}$

$$
g \operatorname{in}(S)=\operatorname{gin}\left(\left\{\delta_{i}\right\}\right)=k
$$

If an interval monotone, JHC graph has the additional property that the geodesic intervals are decomposable [12], then g in $(G)=1$. Also, we observe that the class of graphs with decomposable intervals are nothing but the class of geodetic graphs. Hence we have,

Theorem 2.16. If G is a geodetic, JHC graph, then $\operatorname{gin}(G)=1$.

Proof: Since G is geodetic, it is interval monotone.
Because G is JHC also, the geodesic interval operator Satisfies the peano property by Theorem 1.3. We denote by ab the shortest path connecting a and b.

Now, let $a, b, c \in V(G), u \in a b$, and $v \in c u$. It is enough to prove that v is in one of the intervals $I(a, b), I(b, c)$ or $I(a, c)$. Because G is geodetic $I(a, b)=a b$.

Fig. 2.14.
Assume without loss of generality that $d(c, v)=1$. Let $d(a, c)=\ell_{1}$ and $d(b, c)=\ell_{2}$. Now, by the Plano property, there are vertices $v_{1} \in b c, v_{2} \in a c$ such that $v \in a v_{1} \cap{ }^{b} v_{2}$. Now because $d(a, c)=\ell_{1}, d(a, v) \geq \ell_{1}-1$.
If $d(a, v)=\ell_{1}-1$ then $d(a, c)=d(a, v)+1=d(a, v)+d(a, c)$ and hence $v \in a c$.

So assume $d(a, v) \geq \ell_{1}$.
If $d(a, v)>\ell_{1}$ then $d\left(a, v_{1}\right)=d(a, v)+d\left(v, v_{1}\right)>\ell_{1}+d\left(v, v_{1}\right)$ That is $d\left(a, v_{1}\right)>d(a, c)+d\left(v, v_{1}\right)$ Now $d\left(a, v_{1}\right) \leq d(a, c)+d\left(c, v_{1}\right)$

Therefore $d\left(v, v_{1}\right)<d\left(c, v_{1}\right)$ and

$$
\begin{aligned}
& \ell_{2}-d\left(c, v_{1}\right)<\ell_{2}-d\left(v, v_{1}\right) \\
& d\left(b, v_{1}\right)<\ell_{2}-d\left(v_{1} v_{1}\right)
\end{aligned}
$$

$d\left(b, v_{1}\right)+d\left(v, v_{1}\right)<\ell_{2}$ and so $d(b, v) \leq \ell_{2}-1$ and
$d(b, v)<\ell_{2}-1$ is not possible and hence $d(b, v)=\ell_{2}-1$ and in this case $v \in b c$.

$$
\text { Now assume that } d(a, v)=\ell_{1} \text {. }
$$

Fig. 2.15

In this case $d\left(a, v_{1}\right)=\ell_{1}+d\left(v, v_{1}\right)$
Now, if $d\left(c, v_{1}\right)>d\left(v, v_{1}\right)$, then

$$
d\left(b, v_{1}\right)+d\left(v, v_{1}\right) \leq \ell_{2}-1 \text { and hence } v_{1} \in b c
$$

So let $d\left(c, v_{1}\right) \leq d\left(v, v_{1}\right)$. But $d\left(c, v_{1}\right)<d\left(v, v_{1}\right)$ is not possible because $a v_{1}$ is a shortest path containing v. Therefore $d\left(c, v_{1}\right)=d\left(v, v_{1}\right)$.
But this is again a contradiction because these give two distinct shortest paths connecting a and v_{1}.

