
c

11



II

CONVEX SIMPLE SRAPHS AND INTERVAL MONOTCNIOITY

i„ thi. .h.pt.r. "

«o„v„ .i™.. P-P". 'Hopph .n, ai=t.„o. pon... -i™!.
,„ph i. tpt.uy ppp iP""*' " ""
tpp., ,1.. t.« ""
t.n.l... PP.PA A*""' ' "" """" "

A  i-Viat d c 3 graphs and t.n.i.m. graphs areis also observed that d.c.s g

f  a However, with respect to minimal pathhalfspace free. Howeve

•V It is seen that there are no uniconvex graphs andconvexity it is seen

,  es of k for which a k-convex graph exists shouldthat, values ot k ioa

.:ntions We further concentrate on the
satisfy certain conditions.

V, of an interval monotone, JHC graph and alsoiteration number of an inr

a geodesic, JHC graph.

J.l dismkoe convex sihfle geephs EBD
.  TOTELtY »0» lETEEVEL HOEOTOEE GEEPHE

US first consider the two necessary conditions
f order at least five to be distance convex

for a graph 0 or

simple.
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Theorem 2.1 [41]. A d.c.s graph G of order at least five

satisfies the following conditions. »

Cl. For any 2-path u-v-w in G, there is an x in V such that

<  {u,v,w,x} > is a chordless 4-cycle of G.

C2. For any 4-cycle u-v-w-x-u in G there is a y in G such

that y is adjacent to either u and w or v and x.

Q -graph of the 3-cube satisfies Cl but is not

d.c.s. We first observe that Cl and C2 are not sufficient

conditions. The graph in Fig.2.1 satisfies both the

conditions but is not d.c.s.

G: ^

Fig. 2.1
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In G, {a,b,c,d,e} is a convex set.

All connected graphs of order atmost three,

for m,n > 1. K '"i > 2 for i =n^ "2 r
1, 2,...,r are

examples of d.c.s graphs.

The following theorem gives another class of d.c.s

graphs.

Theorem 2.2. [13] Let G be a triangle free graph. Then the

graph D.(0) obtained by taking X copies, ,G^ of
A.

G and joining each vertex u. in G. to the neighbours of the

corresponding vertex u. in G, for i,j = 1,2 X, is a

d.c.s graph for X > 1.

The graph D2(C5) is shown in Fig. 2.2.

Fig. 2.2
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The following theorems from [41] are of much use

to us.

Theorem 2.3. Let G be a planar connected graph of order at

least four. Then the following are equivalent.

1. G is d.c.s.

2  G is a block without an induced subgraph

fo a cycle C , C for n > 4 or a 6-cycle withisomorphic to a cycie

exactly one bichord.

3. For each vertex u of degree at least three,

» ,rer^ex u' in G such that N(u) = N(u').there is a unique vertex u

Two such vertices u and u' are called partners.

,1 a d c s graph G(p,q) is planar if and only ifTheorem 2.4. A d.c.s gioi-

q = 2p-4.

-  T ^1. Q jrje a connected/ planar graph of
Theorem 2.5. [56J

j  n Then 0 is a d.c.s graph if and only
order p ̂  4 and G *

if it satisfies Cl.

Interva1 monotone graphs [53] are those for which
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no

a

all its intervals are convex. Trees, hypercubes, Ptolemaic

gi^aphg are examples of interval monotone cfraphs. A ^rapb is

totally noninterval monotone (t.n.i.m) if no nontrivial

geodesic interval is convex. It is clear that I(a,b) is

convex whenever a = b, a adjacent to b or I(a,b) - V(G).

These are called the trivial geodesic intervals.

Note 2.1. A t.n.i.m. graph satisfies the conditions C1 and

C2. Otherwise, if u-v-w is a 2-path in G such that there is

t an X adjacent to u and w, then I(u,w) = {u,v,w} will be

convex interval. Similarly, if C2 is not satisfied, then

the cycle u-v-w-x-u gives the convex interval

I(u,w) = {u,v,w,x}.

However, the conditions C1 and C2 are not

sufficient for a graph to be t.n.i.m. In the graph of

Fig. 2.1, I(a,e) = {a,b,c,d,e} is a convex interval.

It is clear that d.c.s graphs are triangle free

n„i- the converse is not true. The graph G of
and t.n.i.m. ouz

1. free t.n.i.m. graph which is notFig.2.3 is a triangle

d.c.s.



Fig 2.3

In G, the only nontrivia1  convex set is {a,b,c,d,e,f} and it

.  ̂ 1 That is, G is a uniconvex graph in
is not an interval. That is,

•  "intfirval xs convex,
which no nontrivial

Since any connected graph of order atmost five

.  ,= • r-i and C2 can be expressed as an interval
which satisfies C1
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(C and K which are the only such graphs, can be
4  2,3

expressed as interval) a convex set in a trianglefree

t.n.i.m. graph will contain at least six vertices.

However, for a triangle free planar graph G, the

following theorem holds.

Theorem 2.6. Let G be a triangle free planar graph. Then G

is d.c.s if and only if it is t.n.i.m.

Proof: If G is d.c.s then it is t.n.i.m trivially. Now,

let it be a triangle free planar t.n.i.m graph. Then G Q3
n  -ics not t.n.i.m. Now by theorem 2.4,

(the 3-cube) because is not

G is d.c.s..

We shall now give two methods of constructing a

triangle free, t.n.i.m graph, having exactly k non trivial

convex sets.

T^f r be a d.c.s graph with I(a,b) ̂  V(G)CONSTRUCTION 1. Let G ne a

U ̂  ufGl and let G,, G and G be three copiesfor any a,b « V(g; a" 1 2 J

of G to the corresponding vertices
of G. Join each vertex of

,1 osch vertex of G to the neighbours ofof 0 and G^ and eacn v 2
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corresponding vertices of . The resulting graph IS

denoted by .

Remark 2.1 can also be obtained by taking x G and then

multiplying all the vertices of the copy of G corresponding

to one of the vertices of Also if u.v c G and u.,v. are

1. • « r#=«c;Donding to u and v, for i = 1,2,3. Thenthe vertices corresponuxi y

d(u,,v.) = d(u,v) for i = 1,2,3
^ 1 1

d(u^,V2) =

The graphs induced by G^ U G^ and G^ U G3 are isomorphic to

G X Kj and that induced by ^

Claim: G^ is having exactly one convex set and it is V(G^).

It is enough to prove that Co({u,v}) = V(G^)
^ u(G ) and Co({u,v}) = V(gS if one of u and vwhenever u,v ̂  V(G^;

is in G^ ^3*

^Tfr 1 be non adjacent vertices. Let
case 1: Let « V(G^;

)  = d(u,,M.) +1 where w is the
w € G. Then d(Uj^, ^

w in G. for i=l,2,3.corresponding vertex of 1
A(v w )+l- Hence,Also d(Vj^,W2) - 1
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d(u^,v^) < d(u^,w^)+d(v^,M^)< d(u^,W2)+d(v^,W2)+d(v^,W2)-
Hence, is not on a u^-v^ shortest path. Now, because G is

d.c.s no nontrivial subset of is convex. Hence,

Co({u^,v^}) = V(G^).

case 2. If u,veG2UG3, thenby theorem 1.2, U G3
induce a d.c.s graph and hence V(G^), V(G^) <= Co {u,v}.

^ r w w € Co ({u,v}), where w ,w are
Now, for any w € G, ̂ 2' 3

f  in G and G . w is on a shortest w^-w^ pathcopies of w in G^ana ^ ^

,  Codu.v}). Therefore
and hence w € Co({w2/ 3!^

Co({u,v}) = V(G ).

.  , Let u ^G andv ^G (similarly when V3€G3).Case 3. Let ^ 1 2 ^

^ rfu V }). N°«' "^"2^ ' "3Then u ,V3 e Co({u3,V2i;

.  ,„t u p«">- ■«>•' '= "2'"3 •on a shortest r ^
9  Co ({u,rV }) = V(G ).Then, as in case / 1 2 ^

4- he expressed as an interval, G isNOW, since V(G^) cannot be exp ^
1  the place of G, construct G in which

t.n.i.m. Taking G m
1  . are the only convex sets. Proceeding likeV(G ) and V(G^)
^  t , ,,,(5 ) V(G,), V(G ) V(G ) are. pK . which V(G 1, ''V 1' 1 1

this we get G u

the only convex sets.



39

CONSTRUCTION 2.Let G be a d.c.s graph in which I(a,b) ̂  V(G)

for any a,b e V(G). Replace each vertex of a star by a

copy of G. Join each vertex of the copy G^ of G

j- nonff>r of K , to the correspondingcorresponding to the center

vertices of the other copies. Now, replace each vertex of G^

by a pair of nonadjacent vertices. The graph G so obtained

is a triangle free t.n.i.m graph with exactly k convex sets.

Remark 2.2. In general, the k-convex graphs obtained by
A  ruction 2 are not isomorphic. InConstruction 1 and Construcciou

tr

ciets of G form an ascending chainConstruction 1 the convex sets

1  , But in Construction 2, theV(G ) c V(Gp c . . . c V(G^ ;•
.  .„f However, when k=l both the

k convex sets are disjoint.

constructions give the same graph.

es

y

„e shall now discuss the separation properti
V  f A r- s graphs. Any graph trivial 1(Definition 1.16) of d.c.s g

The graphs in Fig.2.4 indicate that
satisfies proper y*

fiqfying S. but not ^ " 1,2,3.
there are graphs sa i
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Gr"
G-i'-

Fig 2.4

G  is not Sj G  is S. but not S
2  2

Here, there is no

nr,r, the convex set {x,,x.} and the vertexhalf space separating tne corvba j

u. G is S3 but not S4 . The convex sets {v^.v^} and
{v V } are disjoint convex sets which cannot be separated

3' 4

by halfspaces.

„Ks.Dhs for which V(G)\C is not convexThere are grapns

C  We make the following.for any convex set

Definition 2 1  A graph G is halfspace free if no subset of

V(G) is a halfspace.

Theorem 2.7. ^ connec
ted triangle free graph G of order at

least five is halfspace
free if ii satisfies the conditions

C1 and C2.
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Proof. Let G be a connected triangle free graph satisfying

C1 and C2. Let C c V(G) be a convex subset. To prove that

V(G)\C is not convex.

Let u « V(G)\C, V € V(G)\C and uv e E(G).

Let w e V(G), w ^ V and wu € E(G). Note that such
,  r* 1 ̂  of oird©r ©t l63st fxv© ©nd xt

a v©rtex ©xist b©caus© G xs or

. • f r-1 NOW w-u-v is a 2-path and by 01 there is an xsatxsfxes C1. wow w u

j • fn w and V (s©© Fig.2.5)
in V(G) which xs adjacent

w

U o

-Q X

Now X € V(G)\ C becaus^

Fig« 2.5.

C  is convex, v e V(G)\ C and

V € Co ({u,x})•

.  not convex because u € Co({w,v}), but
If w e V(G)\ C, it xs

1  t C and X « V(G)\C.
u « C. So let w

.. . 4-orci. "2' '
Now, W-U-V-X-W IS

, to either w and v or u and x.
vertex y adjacent

s  a



Let y be adjacent to w and v. Then y « C because in that

case V e Co({u,y}) c C which is a contradiction. Hence,

V G V(G)\ c. Then, since w € Co{y,x} and w g C, V(G)\ C is

not convex.

V is adjacent to u and x. Hence,
Similar is the case when y

.  p v(G)\ C is not convex. That is,there
for any convex set C,

is no halfspace in G.

Corollary. Distance convex

are halfspace free.

imple graphs and t.n.i.m graphs

ro is necessary for a graph to be
Note 2.2. Neither C1 nor C2 xs n

u r ot Fig.2.6 does not satisfy
halfspace free. The grap ^

.  , . do.. ««t "■ "" "•Cl, and G^ of Fig-
halfspace free.
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Fig 2.6

riant could easily be determined
The convex inva

for d.c.s graphs.

three vertices contains a p

u(c) This observation leads toand Co{{u,v}) - V{G}.

If G is a d.c.s graph, then any set S of

r u.v of non adjacent vertices

Theorem 2.8. For a

t, r h(G) = o(0) = = 2 andd.c.s graph 0, n^t,;

e(G) = 3.

It is interesting to observe
the star center

ion 1.17) of a(Definiti

Theorem 2.9. [12]• ^

d.c.s graph. It ia known that

convex s
tructure with Caratheodory

number 2 is JHC.

Theorem 2.10 [12]
^ JHC convex s

tructure has the Brunn's

property.
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1.1^ me 9 fl 2 9 and 2.10 it follows thatBy theorems 2.o/ ^

d.o.s graphs satisfies Brunn's property with respect to the

convex hull operator. But when we consider the geodesic
.  4-Vkic will not be true,

interval operator, this

<• r* in Fi9«2.7 is d.c.s.
For example, the graph

G:
o. %

Fig-2-7

Let S =

the set {2,4} which is
^  41 Ker(S;is{1,2,3,4}/

disconnected.

roNVEX SIMPLE GRAPHS
./tk convexity and m-CONVEX

.2. MINIMAL PATH

y  sets we mean only
section oj

in thxs minimal path intervals.
A bv intervals,

m-convex sets an graph G, c(G) is at
1  10) thatfTheorem !■

It is known (^ne
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most 2 and has JHC property. Hence, by theorem 2,10, G has

the Brunn's property. But, if Ker(S) is taken with respect

to the minimal path interval operator, this is not true.

Consider the graph G in Fig.2.8

G:

Fig. 2.8

In G, let S = {x,u,v,w,z,y}. It can be seen that

x,y € Ker(S). But u, which is on a chordless x-y path is

not in Ker(S).

However, the following theorem gives a class of

graphs for which the Brunn's property holds with respect to

miinimal path interval.

Theorem 2.11. Let G be a chordal graph and let,

Ker(S) = {z € S: I(z,s) c S} for every s e S} for S c V(G).

Then Ker(S) is convex.
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Let PjL ~ ^

= X

„  ̂ ^ ^ ^ and z is on some x-y chordless
Proof: Let x,y € Ker^o;/ ano

path where S c V(G).

TO prove that I(x,y) c Ker(S) where,

I(x,y) = = z

/e^ Tfx s) c S, I(y,s) C S, for every s e S.Since x,y e Ker(S), K '
I-Kaf ifz s) C S for every s s e S.Letz^I(x,y). TO prove that I(z,s,

^  loss of generality that z is adjacent to x.Assume without loss

, .= be an z-s chordless path and
-ai-a2-- - --®n

u  - V be an x-y chordless path.
P  = x-z-b -b2-- - --''k ' ^
2  chordless, then clearly

- a ■" S ®If x-z-a^-a^"• • • n

z,a,. . . ,a^,s e S.
_a -z is chordless path.

,  . fhese ai-*=
So assume a

. _ X (Note that ona  is adjacent r ' chordless).
.u K because z-a^ a^ „of this path is ' , Jn G If ^ > 1 this is

.3 -z-x ia a cycle m 0-Then x-a^-a^_j^-- • • 1 ^ has g chord. Thus
a cycle of length Similarly if b is

^ ^ , is adjacent to a^.
we can see tha



47

adjacent to a for some m=l, we can see that a^ adjacent to
m

(see Fig .2.9).

a P
n

s d

Fig 2.9

ora -s is a chordless path
Now if P3 = "

j[s a chordlGSS path, a , . . . ,a € S.

if X is adjacent to a^ for some t > 1 then xAs above, it *

.  .O a adjacent to for someis adjacent to a^-

•11 be adjacent to some vertex on b^-b^.-.b.. Let
m > 1, ̂ 2

« K -h -...-b. which is adjacent to
b  b. th. <i"t "i ' '

a  . (see Fig.2.lO)
2
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S d

Fig. 2.10.

tj-i 11 be a chordless cycle of
u  u - -b .-a^-x will oeThen x-z-b -h^ • • J ^

P  or P, is chordless.
.  1 four. Hence either f ^length at least tour.

w  1 c S and therefore r e Ker(S).Hence l(z,s) ̂

1  e s) graphs are those whosem-convex simple (m.c.s;
are the null set, singletons,

on., oontrl.i.l co„v.« =ubo.t. , , ,,
pairs of adjace

necessary and sufficient condition
following theorem gives

for a graph to be m.c.s

T  A gtaph is m.c.s if and only if it has
Theorem 2.12.

.  „ or clique separator.._1 ciigue or
no nontrivial
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It is clear that d.c.s graphs are m.c.s. But the

•= r.nt true For example, the graph in Fig.2.11 isconverse is not true.

an m.c.s graph which is not d.c.

G:

Fig. 2.11

, -2 it is clear that 0 is an m.c.s graph. But
By theorem 2.12 it

fc fi 71 is a nontrivial d-convex
u 1. not d.o..

.h.th.r lh«. .xl't •« """
set The question

hich is triangle free and totally non
k, a k-convex graph w , i-aj us

to m-convexity also, lead us
fnne with respect to minterval monoton r

to following theorems.

is no uniconvex graph.
Theorem 2.13. There is

graph having a nontrivial convex subset.Proof: Lotobo. ^
Then by theorem 2.12'
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c  c^be components of G\S. Clearly n > 2. Then C.U S
Is convex ^in G because any chordless path connecting

f r 11 S will be contained in <C^ U S>. Note that
vertices or wxaa i

any path containing a vertex not in
since S is complete, any p

d  Thus the number of convex sets is.  U S will have a chord.C
1

at least two.

«. c.n . con..x ..t C to b. . oonttl.i.l
K  t If no ptopot .nbsol -« o.rdln.llt, otconvex subset it n f

least three is convex.

_ -nocifv the condition on k
.The following theorem specify

for a graph to be k-convex.
which is necessary

Q  be a k-convex, triangle free.
Theorem 2.14.

♦•K^re is an 'n* such that,  Then there
2-connected gr^P

(n-l)(n+2)/2 < k ^ 2 -2-
C  be minimal nontrivial subsets of G.

Proof: bet vertices for i ̂  j.
ntains at most twoHence C^f) co ontrivial convex set which is a

o n C will ^ "Otherwise C. f) j „ r = S with |s| = 2.
.. . Let C.n Cj

proper subset o
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Claim 1. S is a clique separator

Leit S = {x,y} • Then,

C0(S)cC^nCj- If .

Will b. . n.ntrl.i.l .ub..t Pf.P«Il i" =1'
Hence x is adjacent to y, that is S xs a clique.

» j-hat G\S is disconnected. If not.Now to prove that u\
fwvc is connected by a path. In

u<»rtices in G\5 is
each pair or verux

c r \S is connected to each vertex
p.rlicul.r, ..Pb ,

ih in <1\P- "t o, • =1^= 'i'
of C .\S by some path

^  ur.-rMess c.-c. path in G\S.
be a chordless ^ ^Let / j that c is so chosen that

.  1 oa of generality that c.Assume without 1° i * r. is not
.  G is triangle free c^ is not

i  . Since e i» i
^i' ^ r»f S bet it be x.

.  „ne vertex of s..  1 on®adjacent to a k which contain c. on it.
,  ath joining ^

Consider the P induce a chordless

,  , iHnf —It is clear tn . ^ S This is not

.  ninq a vertex m C.S •
c.- X path cental disconnected.1  „^,ex. Hence G\&

^  is convex.
possible because ^ ^ nf size at least two,

,s, PM °
Therefore, i'' j

.  a separator set.then S IS a sep

Vi. a graph with,
Now, let H be
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C } and C. is adjacent to C , ifV(H) = -Cj' • • •'"^n 1 ^

C n C is a clique separator.
i'' D

Claim: H is a block graph.

■ 11 be a block B in H and ^ ,C e B
If not there will be a o x j

^  ̂n C in H. Assume without
.uch th.l c. 1. n.l .d=3""' "J

^  I. C ) = 2 and leti = l/ j -3.
loss of generality that ( i' j

.. since these are vertices of a
Let C -C -C be a pa1 2 3 4.U r -C . .-C.-c_ connecting

• 1 1 be another path 3 4 1 1block, there will

C- and C .
3  1

^ c - s . Note that

L.ic^nCa*®!' 2" ' ̂ ^ „d h.»« via b.
3^ , s,. otb«.ib. ..„d. 0 ..

r  which is » ,adjacent to . ^bat x is not

eet an x ^ ^
triangle free, we y assume without loss of

Note that x,y ̂
adjacent to Y-

^ S and ^2 ^generality that i c fl ^2 ̂  ®3' *^3 ^
[If = S. = S..1 = when - S3 - ....

will be adjacent to C3•
.. = s. . ]

1
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Now because p| ^ (j) /C^ p ̂ i-1 ̂  * * * ^3 fl ^2 ̂  ̂

X € C^ and y € C^ / we get an x-y path through , ̂ i-l'*'* *

.., C , C and hence a chordless path joining x and y
3  2

.  . . . * «?ets. That is C_ is notcontaining vertices of these set 2

radiction. Hence H is a block graph,convex, which is a contraaictxuii

.  y* __j r* are convex and C_ n C - S, aNow observe that if and j 1 2

^  I I y is convex. Hence, the convex sets
clique separator, ̂ -^^ 2

««dina to the connected subsets of H.of G are those corresponding to

of connected sets of a block
It is known that the numb

a path and is a maximum when it
graph is minimum when it

of connected sets other
is a complete graph. The number

/  iWn+2)/2 when it is a path and it
than the whole set is (u

i.te graph. Hence the number of
is 2"-2 »h.n It is a ooTOlst. 1'

.  „

connected sets m n

V- oav.s Jtaph 1»P"" """ "
Therefore, G is a k

< k < 2"-2 °-
such that (n-l)(n+2)/2

_  - 1, then K
ustration: ^

m. c. s

graph.
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„ „ . I, .h.» kO. s.. ther. 1. no unioonv.n gr.,!,.

„ „ = 3, khon 5 3 k < 6, .. th.r. i. no 3-oo»».x grogh
or 4-convex graph.

o < k < 14. s° there is no 7-convex orIf n = 4, then 9 < k _ l''.

8-convex graphs.

om 2.14/
Remark 2.3. In the theor •

irwise nonadjacent vertices, then the
consists of m pa , i. m

r...i3ts of at least m-edges.j Viv C consists
subgraph of G induce f . „hbours of C. which

C  are the neighbours or .
This is because if • • • n

A-iacent, then in G-are pairwise nonadj ^ ̂  for k ̂  ̂
k = 1, ® k ^

?! S, K, tori n " "2

.  -f order p. Then there
o he a block grapCOROLLARY: Let H n ^ jt-convex where k is
.  a' such that G' is

is a t.n.i.ni grap ther than the null set
subsets of H o

the number of conv

and the whole set.
be sufficiently large^ 3_ Take n to

t  /n ~ K n - ■ H as in the
Proof: Let G - ^.n ..ertices of

^  are the ven

"  V,.. = V- -SO that

l  he

Remark 2.3/ then

c-
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r  i. n r G be p copies of G.
form G* as follows. Let G^/ 2'' *' p

c r. uith the corresponding edge of G ifIdentify an edge of G^ w j

*. 4-^ r in H. That is, G.n G ~ K
and only if C. is adjacent to C. m H. ,11 3 2

^  c in H. Now, the nontrivial
in G' if C is adjacent to ^

/  f r. are those corresponding to the convex sets
convex sets or G

I-V,» null set and the whole set.
of H different from the

f these is an interval.
Now we prove that none o

i  then, I(a,b) cannot be
If a,b « G. for some x,

,  - G Then any path
€  G / b ^ 2'

convex. Assume that a x , _ „i
the vertices of a clique,  b contain the

connecting a and

V(G.). 1 2
separator S where corresponding

,  . „ and V, 2
r  ̂ r^r^ bet V- jbipartition of V( 1• ' a € V )•

^ V (similarly when a €ets in V(G^). bet a « i,l ^xist because
I I foil such a.  ,, \ (S U

pf a ^ V_ , \ ^ . . .»Let a € V1,1 j I V I ^
o  a singleton and | i,lS pj V. _ IS a smy

Ifl

Claim: . path then a-b^ is a chord.
an a X'

-b , I- • •
-b path containingIf a-b -a -b2-«2-" . , 3 chordleee a

exist a

Hence, there does n convex.
•  ,ial interval

a, . Hence no no
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Illustration:

H
xo-

G:
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Ci

V

Fig 2.12

2.3. iteration number
t,or of a graph G, min(G)

th iteration numberMinimal pn , iteration number
4-n geodetic

r  analogo"® to[27] is a concept a' similar manner by

It is obtained m
(Definition l.Hl' -fnr by the minimal path

•nterval operator
A f i C

Replacing the <3^^ ®

interval operator.

It can be

sequential join of

observed that

copies S

for any given k, the

is a gi^aP^ which is
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both its minimal path iterationboth d.c.s and m.c.s and botn

number and geodetic iteration numb

fhat the Caratheodory number of any graphWe know that tne

•  atmost 2 and hence JHC. In addition, ifwith m-convexity is atmos

M-h respect to m-convexity,
G is interval monotone wi

min(G) = 1 and conversely-

convexity it is necessary ,. is not sufficient
.  ,r) = 1.

and JHC in order that gi"

(See Fig.2.13)•

Fig 2.13
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Let S = {a2,b^,d^}. Then,
1  ,1 a b d } ^ ~ •

Hence gin (G) ̂  !•

.  interval monotone but not aHC, thereIf G IS inter

J4.K lql = 3 such that gin(S) is
^ Q r V(0) with |o|are graphs G and S

large. However, we have,
interval monotone graph

-  1. n he a

Theorem 2.15. Le

.  (s) ̂
let S c V(G). Then 9

k-1 r 125-111 < k.
^ ̂  ^ log 2

a }•
n

= Co({ai

Proof: Let S =

Let

C  = Co({a[-n/2l+l'
€ C,, C, s Cj},

,  .U(Co({Oi-V>' ''I ^
Then Co(S) = 00(0^ U Cj)
since G is JHC. 6 Cj) becaus

,  c )= ^1^ 1' ^= U (iC'l' 2'

interval monoton©
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11^ \

Hence Co(S) = U 1 ^

^ (c^Uc^)'.

Now let C = Co({a^,^2' "

=12 ■

r3n/4l^^
= Co({a|-j^/2l+l'

^22 '^°^^^("3n/4]+l'
,  a })

*  ' n

Mr ") . Then as. C = Co{C . U C^2>-
1 1 r ) 2Then C, = Co(C T U

1  IJ- 1

1  J c = (^21 *^22^,1 ^ )-^ and Cj 21
above, C = ^ ̂12'

MC )^U(Si^''22^ ^
Hence Co(S) = (^^11

M C U Si '
• "^11 " . il)U...)'

rn/2lj) U Co({®fn/4l+l
=  (Co( , • • * ' ® [n/4l

2t , ^ln/2]^^ ^ •••^
2  j) ^

=  (Co({aj^/ • • • '®|'n/2 1

Pfoceeding lik®
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Co(S) = "
k

•  • • U {ar(2'^-l)n/2''l+l'^^^

Now, When [n/2 ] " ̂
k-1 k / ar //%^1 ̂  ' Co(a ) -2^ n < 2 and Co(a^. • • a |-n/2 |

I I r 1 U {a })Co(S) = ({a^} U {^2^'' * ^

k

k

=  ({a^ • • • ®
k

u  • e < k whei^a 2 , I SI ̂  iH.„c., g.„ S . K, ^ < k

k-1 <(lo, -/ 103 » - "■

k-1 < n < 2*^-

The following discussion ^ ^ ^ g < j .
that gin(S)

and S c V(G) such
Let Q„ be thenteger and n = 2 •

Let k be any ^ n-tuples.
jfh

tices labell® ^ = 1 and = 0 forn-cube, vertice where x^ J
_  (X,' • ■ "*n X ) = 2, for i 0.

,  Then,_  . ,0) •
j ?! i and Sq= (0'°'
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Let S = {<5,'<52' • • •

„  - X = 1 and X. = 0 for
If 6. . = (X, '* ) i 3 ^

1' J 1

adjacent to <5. and 6..
k  i / j, then j

Hence, = {<5q} U S U N2(<5o^

ts ) be such that i, 3
Now if 6, • <5^ / ̂  "2 0

i'3

,  if A = {i'j'l^'^>
d(6. . , 6^) = 4

^'3 „ -
- « = 1 and X = 0 for

= x.= *1,= ■"
6  ' "■

A
=  (X . . 'X )

m er A, then, j

He„„, s' = 1^„) U » 0
,i ) U " "2'.  (a„) U = " "2' "

..UN

3-{<5 } U S U ^Similarly, S -i q „ ,u..-"v<v-«v
,  I I <? U ^^9 0

s, -
} U S 2

^  = k •
Hence, gin(S/
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,  n < 2 / in the above
Note 2.2. If n is such that 2

example,

=  (sy U S U NjC-Sq) ̂

and

. 1 1 IJ N (^rt ) • • • U N (<5 ) .
=  {6^} U S U N2«5o) ̂  • • •^ °

.  . 2*'"^ < n ̂  2
Therefore if n is such ^

g in (S) ■ 9ln . h . th.
.  .grv.lIf an inter

that the geodesic intervals areadditional property ^ observe that
decomposable [12], then 9 -ntervals are nothing

u  with decomposable mclass of graphs

th, cl„, o« """"'

7HC graph/ then,, , ggodatlo. w:
leorem 2.16. If <5 is

the

but

= 1.

^  interval monotone.
r is geodeti"' interval operatorSince G IS y geodeSic

iHC I 3. we denote byG  is Theorem 1-

s the peano gnd

-thhortest pat^
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NOW, let a,b,c € V(G), u € ab, and v e cu. It is enough to

prove that v is in one of the intervals I(a,b), I(b,c) or

I(a,c). Because G is geodetic I(a,b) = ab.

o

O V

O. c

<iv

~o
u

O. V

Fig. 2.14.

U  f loss of generality that d(c,v) = 1. LetAssume without lo
X  - / NOW, by the Peano property,

d(a c) = d(b,c) - 2
'  . „ ^ be, V, ̂  ac such that v ^ av^ n

there are vertices ^

s  _ / d(a,v) 2: ^i"^*
Now because d(a,c) - i> ^ a/ \

e) = d(a,v) + 1 = d(a,v) + d(a,c)
.  / _i then d(a,c;If d(a,v) = ^

and hence v e ac.

so ..,™. ac.v) 2 V ^
If d(.,») > 'j '

,  , > d(..=) '
That is d(a,Vj^)

/  c) +
.  \ dii ̂  f 'Now d(a,v^) -
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Therefore d(v,v ) < d(c,Vj^) and

I - d(c,v^) < i (v,Vj^)

d(b,v^) <

d(b,v^) + d(v,v^) < ^2 -^2"^
d(b,v) < i -1 is not possible and hence d(b,v) = t^-X and 1in

this case v € be.

Now assume that d(a,v) ~

Fig.2.15

\  = I + d(V/V )
In this case d(a,v^) 1

,, „ \ < { -1 and hence v e be
d(b,Vj) + ' 2 ^
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\ < dfv V ). But d{c,v ) < d(v,v )is notSo let d(c,v^) ̂  d(v,v^; 1

otr is a shortest path containing v.
possible because

Therefore d(c,Vj^) = d(v,v^).
■  . contradiction because these give two

But this is again a con

1. 4-^of tjaths connecting a and v . °distinct shortest patns ̂


