crasgea III

III

CONVEX SIMPLE GRAPHS AND SOLVABILITY

In this chapter, we continue the study of properties of convex simple graphs. Motivated by a problem posed in [41], we define the notion of solvability and make an interesting observation that, all trees of order at most nine are solvable and that the bound is sharp. All trees of diameter three, five, and those with diameter four whose central vertex has even degree are also solvable. However, a characterization of solvable trees is yet to be obtained. A problem of similar type with respect to m-convexity is also discussed. We then discuss about the center of d.c.s graphs. We conclude this chapter with the study of the convexity properties of product of graphs. Some results of this chapter are in [60].

3.1 SOLVABLE TREES

In this section, we introduce the notion of solvable trees associated with a d.c.s graph, to answer the following,

PROBLEM [41] Describe the smallest distance convex simple graph containing a given tree of order at least four.
$K_{2, n}$ is such a graph for $K_{1, n}$. For a tree T which is not a star, let V_{1} and V_{2} be the bipartition of $V(T)$ with $\left|v_{1}\right|=m,\left|v_{2}\right|=n$, then $K_{m, n}$ is a d.c.s graph containing a tree isomorphic to T. However, to find the smallest d.c.s. graph, we note by theorem 2.4. that, for any d.c.s. graph $q \geq 2 p-4$ and the lower bound is attained if and only if it is planar. So, for a given tree T if there exists a planar d.c.s. graph containing T as a spanning subgraph, then that will be the smallest d.c.s. graph containing T. This observation leads us to,

Definition 3.1. A tree T is solvable if there is a planar distance convex simple graph G such that T is isomorphic to a spanning tree of G.

From the remarks made above, it is clear that $K_{1, n}$ is not solvable. Hence, in the following discussions we consider only trees which are not stars.

A USEFUL GRAPH OPERATION:
'We shall now describe an operation frequently used in this section. Let u and $v \in V(G)$. Join u to all the vertices in $N(v)$ and v to all the vertices in $N(u)$. The resulting graph is denoted by $G *(u, v)$ and in this graph $N(u)=N(v)$.

Remark 3.1 If G is planar and if G can be embedded so that $u, v, N(u)$ and $N(v)$ are all contained in the same face, then $G^{*}(u, v)$ is planar. Also, if u and v are partners then $G \star(u, v) \simeq G$.

Lemma 3.1. Any path of length at least four is solvable.

Proof: Let P be a path of length at least four and let $u \in C(P)$. Then $N_{i}(u)$ consists of two non-adjacent vertices for $i=1,2, \ldots r^{-1}$ and $N_{r}(u)$ is either a pair of non adjacent vertices or a singleton according as $C(P) \simeq K_{1}$ or K_{2}, where r is the radius of P.
Now, the graph $G=\langle u\rangle+\langle N(u)\rangle+\ldots+\left\langle N_{r}(u)\right\rangle$ is a planar d.c.s. graph containing P.

Theorem 3.2. Any tree of order almost nine is solvable.

Proof. If T is a path then it is solvable by the lemma 3.1. Suppose that T is not a path. Let u be a vertex of T such that $d(u) \geq 3$ and let $N(u)=\left\{a_{1}, a_{2}, \ldots a_{n}\right\}, n \geq 3$.

Case I. Any vertex in $N_{2}(u)$ is of degree one.

Assume that $d\left(a_{1}\right)=\min \left\{d\left(a_{i}\right): a_{i} \in N(u)\right\}$. Choose

$$
\begin{aligned}
& G \simeq T *\left(u, u^{\prime}\right) *\left(a_{1}, a_{2}\right) * \ldots *\left(a_{n-1}, a_{n}\right) \text { if } n \text { is even and } \\
& G \simeq T^{*}\left(u, u^{\prime}\right) *\left(a_{2}, a_{3}\right) * \ldots *\left(a_{n-1}, a_{n}\right) \text { if } n \text { is odd. }
\end{aligned}
$$

Using theorem 2.3 and the remark 2.3, it follows that G is a planar d.c.s. graph which contains T.

Case II. There is a vertex in $N_{2}(u)$ of degree at least two. Choose $u^{\prime} \in N_{2}(u)$ such that $d\left(u^{\prime}\right)=\max \left\{d(v): V \in N_{2}(u)\right\}$ and let $N\left(u^{\prime}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. Let $N=N(u) U N\left(u^{\prime}\right)$. Note that, $m>3$. Since $|V(T)| \leq 9, N\left(v_{i}\right)-\left\{u, u^{\prime}\right\}=\phi$ for at least one value of 1 .

Sub case 1. $N[u] \cup N\left[u^{\prime}\right]=V(T)$. Then $T *\left(u, u^{\prime}\right) \simeq K_{2, p-2}$ is such a planar d.c.s. graph.

Sub case 2. $N[u] \bigcup N\left[u^{\prime}\right] \neq V(T)$, but

$$
N[u] U N\left[u^{\prime}\right] \cup\left(\bigcup_{i=1}^{m} N\left(v_{i}\right)\right)=V(T)
$$

Without loss of generality assume that $N\left(v_{1}\right) \backslash\left\{u, u^{\prime}\right\}=\phi$.

Then the required graph is $T^{*}\left\langle u, u^{\prime}\right\rangle *\left(v_{1}, v_{2}\right) * \ldots *\left(v_{m-1}, v_{m}\right)$ if m is even and $T *\left(u, u^{\prime}\right) *\left(v_{2}, v_{3}\right) * \ldots *\left(v_{m-1}, v_{m}\right)$ if m is odd.

Sub case 3. $N[u] \cup N\left[u^{\prime}\right] \underset{i=1}{U}\left(\bigcup_{i}^{m} N\left(v_{i}\right)\right) \neq V(T)$. but
$N[u] \cup N\left[u^{\prime}\right] \cup\left[\bigcup_{i=1}^{m} N\left(v_{i}\right)\right] U\left[\bigcup_{i=1}^{m} N_{2}\left(v_{i}\right)\right]=V(T)$.
Here, note that $N\left(v_{i}\right) \backslash\left\{u, u^{\prime}\right\} \neq \phi$ for at most two values of i, say 1 and 2. Let $w_{1} \in N\left(v_{i}\right) \backslash\left\{u, u^{\prime}\right\}$ be such that $d\left(w_{1}\right) \geq 2$. Since $|V(T)| \leq 9, d\left(w_{1}\right)$ can not exceed three. If $d\left(w_{1}\right)=3$, by the choice of u^{\prime}, we can see that $w_{1} \in N_{4}(u)$ in T and let $u-v_{2}-u \cdot-v_{1}-w_{1}$, be the $u-w_{1}$ path in T (That is, $v_{1} \in N(u)$ and $\left.v_{2} \in N\left(u^{\prime}\right)\right)$.

Now, $G \simeq T^{*}\left(u, w_{1}\right) *\left(v_{1}, v_{2}\right)$ is the required planar d.c.s. graph.

$$
\begin{aligned}
& \text { If } d\left(w_{1}\right)=2, \text { et } w_{2} \in N\left(w_{1}\right) \backslash\left\{v_{1}\right\} \text {, then } \\
& T *\left(u, u^{\prime}\right) *\left(w_{2}, v_{1}\right) *\left(v_{2}, v_{3}\right) \text { is the required graph. }
\end{aligned}
$$

Sub case 4. $N[u] \cup N\left[u^{\prime}\right] \cup\left(\bigcup_{i=1}^{m} N\left(v_{i}\right)\right) U\left(\bigcup_{i=1}^{m} N_{2}\left(v_{i}\right)\right) \neq V(T)$.
Then,
$N[u] U N\left[u^{\prime}\right] U\left(\bigcup_{i=1}^{m} N\left(v_{i}\right)\right) U\left(\bigcup_{i=1}^{m} N_{2}\left(v_{i}\right)\right) U\left(\bigcup_{i=1}^{m} N_{3}\left(v_{i}\right)\right)=V(T)$.

Note that, $N\left(v_{i}\right) \backslash\left\{u, u^{\prime}\right\} \neq \phi$, for only one value of i, there is only one vertex w_{1} in it and there are two vertices w_{2} and w_{3} such that $w_{1} w_{2}$ and $w_{2} w_{3} \in E(T)$. Then, $T *\left(u, u^{\prime}\right) *\left(v_{1}, w_{2}\right)$ is the required graph.

Remark 3.2. In theorem 3.2 the upper bound for the order of T is sharp. Consider the tree T of order 10 ,

Fig. 3.1

A non- solvable tree of order 10 and diameter 4 .

Here, $d\left(x_{i}\right)>2$ in T and hence also in G. So, by theorem 2.3, for each x_{i} there is a unique partner x_{i}^{\prime} in $V(T)$. Now, $x_{i}^{\prime} \neq a_{j}$ or u because $G *\left(x_{i}, a_{j}\right)$ and $G *\left(x_{i}, u\right)$ will contain a triangle for $i=1,2,3$ and $j=1,2, \ldots, 6$. Hence x_{i}^{\prime} can only be x_{j} for some $j \neq i$. Then there will be one x_{i} for which there is no partner.

Theorem 3.3. The following classes of trees are solvable.
(a) Trees of diameter three.
(b) Trees of diameter four whose central vertex has even degree.
(c) Trees of diameter five.

Proof: (a) Since T is of diameter three, $T \simeq S_{m, n}$ (Definition 1.2.), for $m, n>0$.
Let c_{1} and c_{2} be the central vertices and let $N\left(c_{1}\right)=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $N\left(c_{2}\right)=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Then $T^{*}\left(b_{1}, c_{1}\right)^{*}\left(a_{1}, c_{2}\right)$ is a planar d.c.s. graph containing T as a spanning tree.
(b) Let $\operatorname{diam}(T)=4$ and the central vertex c has even degree.

Let $N(c)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $c^{\prime} \in N_{2}(c)$. Then $T *\left(c, c^{\prime}\right) *\left(a_{1}, a_{2}\right) * \ldots *\left(a_{n-1}, a_{n}\right)$ is the required graph.
(c) Let $\operatorname{diam}(T)=5$. Then T will be as in Fig. 3.2.

Fig. 3.2
Clearly A_{i} and B_{j} are independent sets and are nonemtpy for at least one value each of i and $j, i=1,2, \ldots, n$ and $j=1,2, \ldots, m$.

Case 1. Both m and n are even.
Then $\left\{c_{1}, a_{1}, \ldots, a_{n}\right\} \cup\left(\bigcup_{i} \bigcup_{1} A_{i}\right)$ and $\left\{c_{2}, b_{1}, \ldots, b_{n}\right\} \cup\left(\bigcup_{j} \bigcup_{1} B_{j}\right)$ induce trees say T_{1} and T_{2} respectively. Note that $\operatorname{diam}\left(T_{i}\right)<5$ for $i=1,2$. Choose a c_{i}^{\prime} from some A_{i} and a c_{2}^{\prime} from some B_{j}. Then

$$
\begin{aligned}
& G_{1} \simeq T_{1} *\left(c_{1}, c_{1}^{\prime}\right) *\left(a_{1}, a_{2}\right) * \ldots *\left(a_{n-1}, a_{n}\right), \text { and } \\
& G_{2} \simeq T_{2} *\left(c_{2}, c_{2}^{\prime}\right) *\left(b_{1}, b_{2}\right) * \ldots *\left(b_{m-1}, b_{m}\right) \text { are planar d.c.s }
\end{aligned}
$$

graphs containing T_{1} and T_{2} respectively. Now, embed G_{1} and G_{2} so that $c_{1}, c_{2}, c_{1}^{\prime}, c_{2}^{\prime}$ lie in the exterior face. Then, join c_{1} and c_{1}^{\prime} to c_{2} and c_{2}^{\prime}. Note that the resulting graph G is planar and for each vertex of degree at least 3 there is a partner u^{\prime}. Hence G is d.c.s.

Case 2. m is even and n is odd.
Obviously, $d\left(c_{1}\right)=n+1$, which is even and
$\left\{c_{1}, c_{2}, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\} U\left(\bigcup_{i} \underline{U}_{1} A_{i}\right)$
form a tree, say T^{\prime} of diameter four and $C\left(T^{\prime}\right)=\left\{c_{1}\right\}$. Choose a vertex a_{i}^{1} from some A_{i}. Now, $T *\left(a_{i}^{1}, c_{i}\right) *\left(a_{1}, c_{2}\right) *\left(a_{2}, a_{3}\right) * \ldots *\left(a_{n-1}, a_{n}\right) *\left(b_{1}, b_{2}\right) * \ldots\left(b_{m-1}, b_{m}\right)$ is a planar d.c.s graph containing T.

Case 3. Both m and n are odd.
Here T is a spanning tree of the planar d.c.s graph,

$$
\begin{aligned}
& T *\left(c_{1}, b_{1}\right) *\left(c_{2}, a_{1}\right) *\left(a_{2}, a_{3}\right) * \ldots *\left(a_{n-1}, a_{n}\right) \\
& *\left(b_{2}, b_{3}\right) * \ldots *\left(b_{m-1}, b_{m}\right)
\end{aligned}
$$

Remark 3.3. (i) In (b), if the central vertex has odd degree, the result need not be true, as seen in Fig 3.1. (ii) There exists non solvable trees of diameter six. Also, if V_{1} and V_{2} are the bipartition of $V(T)$ such that $\left|V_{1}\right|$ is odd and each vertex of v_{1} is of degree greater than 2 , then T is not solvable.

We ask a problem similar to the problem discussed earlier.

PROBLEM: Find the smallest m.c.s. graph containing a given tree $T,|T| \geq 4$.

$$
\text { If } T=K_{1, n} ; n \geq 3, K_{2, n} \text { is such a graph and its }
$$

size is $2 n$.

Theorem 3.4. The size of the smallest m-convex simple graph containing a tree $T \neq\left(K_{1, n}\right)$ satisfies, $p-1+(m / 2) \leq q \leq p+m-2$, where $|V(T)|=p$ and m is the number of pendent vertices.

Proof. Let u_{1} be pendent vertex of T and v be the vertex adjacent to u_{1}. Let $u_{2}, u_{3}, \ldots, u_{k}$ be the other pendent vertices adjacent to v. Let $v_{1}, v_{2}, \ldots v_{l}$ be the pendent
vertices other than $u_{i} s$. Add edges to T such that $\left\{u_{1}, u_{2}, \ldots, u_{k}, v_{1}, v_{2}, \ldots, v_{l}\right\} \quad$ induce a tree in which $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{\ell}\right\}$ is a bipartition. This is possible by taking a spanning tree of $K_{k, \ell}$. The resulting graph is triangle-free and neither a vertex nor an edge can separate G. So, by theorem 2.12, G is an m.c.s. graph and size of G is $p-1+\ell+k-1=p+m-2$ where m is the number of pendent vertices of T. So size q of the smallest m.c.s. graph is aftmost $p+m-2$.

Now, note that m.c.s. graphs are triangle free blocks and hence all vertices are of degree at least two. Therefore, to make T a block, the degree of each pendent vertex is to be increased by at least one. so, at least $\left\lceil\frac{m}{\frac{m}{2}}\right\rceil$ edges are to be added and hence $q \geq p-1+\left\lceil\frac{m}{2}\right\rceil>p-1+\frac{m}{2}$.

The following example illustrate that there are trees attaining both the bounds. Consider the tree T_{1} in Fig 3.4.

Fig. 3.4

The graph G in Fig 3.5 is an m.c.s. graph of size $q=11=p-1+\frac{m}{2}$, containing T.

Fig. 3.5
Consider the tree T_{2} of Fig 3.6. In $T_{2},\left\{x_{1}, x_{2}\right\}$ is a clique such that $T_{2}\left\{x_{1}, x_{2}\right\}$ is totally disconnected. So, to get an m.c.s. graph at least five edges are to be added. So, $q=13=p+m-2$.
$\boldsymbol{T}_{2}:$

Fig. 3.6

3.2. CENTER OF DISTANCE CONVEX SIMPLE GRAPH

In this section, we determine the center of d.c.s graphs. Properties of centers of various type of graphs have been discussed by Chang [23], Chepoi [30], Nieminen [55], Prabir Dis [63] and Proskurowski [64].

Theorem 3.5. If G is a planar d.c.s. graph of order at least four, then,
(1) G is self centered if diam (G) $=2$.
(2) $\operatorname{diam}(G)=2 \operatorname{rad}(G)$ or $2 \operatorname{rad}(G)-1$, if $\operatorname{diam}(G)>2$, is isomorphic to \bar{K}_{2} or C_{4} according as $\operatorname{diam}(G)=2 \operatorname{rad}(G)$ or $2 \operatorname{rad}(G)-1)$.-1 .

Proof: (1) Let G be a planar d.c.s. graph with diam (G) $=2$. It follows from $C l$ of Theorem 2.1 that $\operatorname{rad}(G)>1$.
So $\operatorname{rad}(G)=\operatorname{diam}(G)$ and hence $C(G)=V(G)$.
(2) Suppose diam (G) >2.

Case I: $\operatorname{diam}(G)=2 k, k>1$
Let $u, v \in V(G)$ be such that $d(u, v)=2 k$ and $u=a_{0}-a_{1}-a_{2}-\ldots-a_{2 k}=v$ be a shortest $u-v$ path. Then by

Cl and theorem 2.3, we get another $u-v$ path
$u=a_{0}-a_{1}^{\prime}-\ldots a_{2 k-1}^{\prime}-a_{2 k}=v$ where a_{i}^{\prime} and a_{i} are partners for $i=1,2, \ldots, 2 k-1$. Note that $e\left(a_{k}\right) \geq \operatorname{rad}(G) \geq k$. Let w be a vertex such that $d\left(a_{k}, w\right)=e\left(a_{k}\right)$. If $w=u$ or v then $e\left(a_{k}\right)=k$, which implies $e\left(a_{k}\right)=\operatorname{rad}(G)$. Note that $e\left(a_{k}\right)=e\left(a_{k}^{\prime}\right)$.

If $w \neq u, v$ suppose that $I(v, w)$ contains a_{k} or a_{k}^{\prime} (note that if $I(v, w)$ contains a_{k} it will contain a_{k}^{\prime} also). Then $d(v, w)=d\left(v, a_{k}\right)+d\left(a_{k}, w\right)=k+e\left(a_{k}\right) \leq 2 k . \quad$ This imply that $e\left(a_{k}\right)=k$. Similarly for $I(u, w)$. Hence in these two cases $e\left(a_{k}\right)=e\left(a_{k}^{\prime}\right)=\operatorname{rad}(G)$. If neither $I(u, w)$ nor $I(v, w)$ contains these vertices, consider a shortest u-w path and shortest $v-w$ path. Then using $C 1$ and theorem 2.3 it can be observed that there is a subgraph homeomorphic to $K_{3,3}$. Hence $e\left(a_{k}\right)=e\left(a_{k}^{\prime}\right)=k=\operatorname{rad}(G)$, that is $\quad\left\{a_{k}, a_{k}^{\prime}\right\}$ is contained in $C(G)$.

Now, we prove that these are only central vertices. If there is some other vertex, say c, in $C(G)$ then $d(c, u) \leq \operatorname{rad}(G)$ and $d(c, v) \leq \operatorname{rad}(G)$. But, since
$d(u, v)=2 \operatorname{rad}(G), d(c, u)=d(c, v)=\operatorname{rad}(G)$. Thus we get a $u-v$ path which is different from the two paths mentioned earlier. Now it can be observed that a subgraph homeomorphic to $K_{3,3}$ is contained in G. Hence $C(G)=\left\{a_{k}, a_{k}^{\prime}\right\}$.

Case II: diam $(G)=2 k+1$ for some $k>0$.
As in the case I, if u and v are such that $d(u, v)=2 k+1$ and $u=a_{0}^{-a_{1}} \ldots-a_{2 k}^{-a_{2 k+1}}=v$ and $u=a_{0}^{-a} 1_{1} \ldots-a_{2 k}^{\prime} a_{2 k+1}=v$ are the two distinct paths then $\operatorname{rad}(G)=k+1$ and $C(G)=\left\{a_{k}, a_{k}^{\prime}, a_{k+1}, a_{k+1}^{\prime}\right\} \quad$ which will induce subgraph isomorphic to C_{4}.

Remark 3.4. Planar d.c.s. graphs resembles trees in its radius-diameter relation and center-diameter relation. For a tree $T, C(T) \simeq K_{1}$ or K_{2} according as diam(T) is $2 \operatorname{rad}(T)$ or $2 \mathrm{rad}(\mathrm{T})-1$. For a planar d.c.s. graph G also, $C(G)$ is $\bar{K}_{2} \simeq D_{2}\left(K_{1}\right)$ or $C_{4}=D_{2}\left(K_{2}\right)$ according as diam (G) is $2 \operatorname{rad}(G)$ or $2 \operatorname{rad}(G)-1$.

3.3. CONVEXITY PROPERTIES OF PRODUCT OF GRAPH 8

In this section, it is proved that the property of being distance convex simple is not productive. However, m.c.s graphs behave nicely.

Theorem 3.6. Let $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ be two distance convex simple graphs. Then $G_{1} \times G_{2}$ has exactly $p_{1}+p_{2}+q_{1}+q_{2}+q_{1} q_{2}$ non trivial d-convex subsets. Proof: Let $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ be two d.c.s graphs. Let A be a convex subset of $V\left(G_{1} X G_{2}\right)$.

Claim: $A=A_{1} \times A_{2}$ where $A_{1}=\{u:(u, v) \in A\}$ and
$A_{2}=\{v:(u, v) \in A$.$\} . To prove that A_{1} x A_{2} \subset A$.
Let $u \in A_{1}, v \in A_{2}$. Then there is a $u_{0} \in A_{1}$ and $v_{0} \in A_{2}$ such that $\left(u_{0}, v\right) \in A$ and $\left(u, v_{0}\right) \in A$. Let $u_{0}-u_{1}-\ldots-u_{\ell}-u$ be a shortest $u_{0}-u$ path in G_{1} and $v_{0}-v_{1}, \ldots, v_{k}-v$ be a shortest $v_{0}-v$ path in G_{2}. Then $\left(u_{0}, v\right)-\left(u_{1}, v\right)-\left(u_{2}, v\right) \ldots\left(u_{\ell}, v\right),(u, v)-\left(u, v_{k}\right) \ldots\left(u, v_{1}\right)-\left(u, v_{0}\right)$ is a $\left(u_{0}, v\right)-\left(u, v_{0}\right)$ path. Hence $(u, v) \in A$. Therefore, $A=A_{1} x A_{2}$.

Now, even if A_{i} is a trivial convex set in G_{i} for $i=1,2, A_{1} \times A_{2}$ need not be trivial. Thus the non trivial convex subsets are $\{x\} \quad x V\left(G_{2}\right)$, where x is in $V\left(G_{1}\right)$, $V\left(G_{1}\right) x\{y\}$ where y is in $V\left(G_{2}\right),\left\{x_{1}, X_{2}\right\} x V\left(G_{2}\right)$ where $x_{1} x_{2} \in E\left(G_{1}\right), V\left(G_{1}\right) \times\left\{y_{1}, y_{2}\right\}$ where $Y_{1} Y_{2} \in E\left(G_{2}\right)$ and $\left\{x_{1}, x_{2}\right\} x\left\{y_{1}, y_{2}\right\}$ where $x_{1} x_{2} \in E\left(G_{1}\right)$ and $y_{1} y_{2} \in E\left(G_{2}\right)$. Number of such convex sets are $p_{1}, p_{2}, q_{1}, q_{2}$ and $q_{1} q_{2}$
respectively. Hence $G_{1} \times G_{2}$ is k-convex where $k=p_{1}+p_{2}+q_{1}+q_{2}+q_{1} q_{2}$.

Theorem 3.7 Let G_{1} and G_{2} be connected, triangle free graphs. $G_{i} \not \not K_{1}$ or K_{2} for $i=1,2$. Then $G_{1} x G_{2}$ is m-convex simple.

Proof: Let $G_{i} \simeq K_{1}, K_{2}$ be connected, triangle free graphs. Note that, if $u_{1}-u_{2}-\ldots-u_{n}$ and $v_{1}-v_{2}-\ldots-v_{m}$ are chord less paths in G_{1} and G_{2} respectively, then

$$
\begin{aligned}
& \left(u_{1}, v_{1}\right)-\left(u_{1}, v_{2}\right)-\ldots-\left(u_{1}, v_{m}\right)-\left(u_{2}, v_{m}\right)-\ldots-\left(u_{n}, v_{m}\right) \\
& \text { and } G_{2} \text { path in } G_{1} \times G_{2} .
\end{aligned}
$$ is a chorales $\left(u_{1}, v_{1}\right)-\left(u_{n}, v_{m}\right)$ path in $G_{1} \times G_{2}$.

To prove that $G_{1} \times G_{2}$ is m.c.s, it is enough to
prove that any (u, v) in $V\left(G_{1} \times G_{2}\right)$ is in the m-convex hull of any two nonadjacent vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$. Now, it can be easily seen that $\left(u_{1}, v_{2}\right)$ and $\left(u_{2}, v_{1}\right)$ lie on a chordless $\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{2}\right)$ path.

Assume without loss of generality that (u, v) is adjacent to $\left(u_{1}, v_{1}\right)$.

Let u be adjacent to u_{1} and $v=v_{1}$.

Fig. 3.7.
If u is on any chordless $u_{1}-u_{2}$ path say $u_{1}-u-a_{1} \ldots a_{n}=u_{2}$ then $\left(u_{1}, v_{1}\right)-\left(u, v_{1}\right)-\left(a_{1}, v_{1}\right) \ldots\left(u_{2}, v_{1}\right) \ldots\left(u_{2}, v_{2}\right) \quad$ is a chordless $\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{2}\right)$ path containing $\left(u, v_{1}\right)=(u, v)$.

So assume that u is not on any chordless path connecting u_{1} and u_{2} (See Fig. 3.7).

Case 1. $v_{1} \neq v_{2}$ and v_{1} is not adjacent to v_{2}. Then $\left(u_{1}, v_{1}\right)-\left(u, v_{1}\right) \ldots\left(u, v_{2}\right)\left(u_{1} v_{2}\right) \ldots\left(u_{2}, v_{2}\right)$ is a chordless $\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{2}\right)$ path containing $\left(u, v_{1}\right)=(u, v)$.

Case 2. v_{1} is adjacent to v_{2}.
Then there is vertex v_{3} in G_{2} different from \mathbf{v}_{1} and v_{2} because $G_{2} \neq K_{2}$. Assume v_{3} to be adjacent to v_{1}. Then,

Fig 3.8
$\left(u_{2}, v_{1}\right)-\left(u_{2}, v_{3}\right) \ldots\left(u_{1}, v_{3}\right)-\left(u, v_{3}\right)-\left(u_{,} v_{1}\right)-\left(u, v_{2}\right)-\left(u_{1}, v_{2}\right) \quad$ is a chordless $\left(u_{2}, v_{1}\right)-\left(u_{1}, v_{2}\right)$ path containng (u, v)

Fig 3.8).

That is
$(u, v) \in \operatorname{Co}\left(\left\{\left(u_{2}, v_{1}\right),\left(u_{1}, v_{2}\right)\right\}\right) \subset \operatorname{Co}\left(\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right\}\right)$.

If V_{3} is adjacent to v_{2}, then
$\left(u_{1}, v_{1}\right)-\left(u, v_{1}\right)-\left(u, v_{2}\right)-\left(u, v_{3}\right)-\left(u_{1}, v_{3}\right) \ldots\left(u_{2}, v_{3}\right)-\left(u_{2}, v_{2}\right)$
is a chordless $\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{2}\right)$ path containing
$\left(u, v_{1}\right)=(u, v)$.
Case 3. $v_{1}=v_{2}$. Then $\left(u_{2}, v_{2}\right)=\left(u_{2}, v_{1}\right)$ and u_{1} is not adjacent to u_{2}. since $G_{2} \not \neq K_{1}, K_{2}$ there are two vertices v_{3} and v_{4} in G such that $\left\langle\left\{v_{1}, v_{3}, v_{4}\right\}\right\rangle$ is connected.

Let v_{3} be adjacent to v_{1} and v_{4}. Then

$$
\begin{array}{r}
\left(u_{1}, v_{1}\right)-\left(u, v_{1}\right)-\left(u, v_{3}\right)-\left(u, v_{4}\right)-\left(u_{1}, v_{4}\right) \ldots\left(u_{2}, v_{4}\right) \\
-\left(u_{n}, v_{2}\right)
\end{array}
$$

$$
-\left(u_{2}, v_{3}\right)-\left(u_{2}, v_{1}\right)
$$

is a chordless $\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{1}\right)$ path containing $\left(u, v_{1}\right)=(u, v)$.

Now, let v_{1} be adjacent to v_{3} and v_{4}. (See Figure 3.9.)

Fig 3.9

From Fig.3.9. it is clear that $\left(u_{1}, v_{3}\right)$ and $\left(u_{1}, v_{4}\right)$ lies on some chordless path connecting $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{1}\right)$ because u_{1} is not adjacent to u_{2}. Then

$$
\begin{aligned}
& \text { adjacent to } u_{2} \\
& \left(u_{1}, v_{3}\right)-\left(u, v_{3}\right)-(u, v)-\left(u, v_{4}\right)-\left(u_{1}, v_{4}\right) \\
&
\end{aligned}
$$

is a chordless $\left(u_{1}, v_{3}\right)-\left(u_{1}, v_{4}\right)$ path.
Hence $(u, v) \in \operatorname{Co}\left(\left\{\left(u_{1}, v_{3}\right),\left(u_{1}, v_{4}\right)\right\}\right) \subset \operatorname{Co}\left(\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{1}\right)\right\}\right)$. Hence, in any case $(u, v) \in \operatorname{Co}\left(\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right\}\right)$ and so

$$
G_{1} \times G_{2} \text { is m.c.s. }
$$

Theorem 3.8. Let G_{i} for $i=1,2$ be connected triangle free graphs, where G_{1} is 2 -connected, $G_{2} \neq K_{1}$, then $G_{1} \times G_{2}$ is m.c.s

As in the proof of theorem 2.16, let $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ be two non adjacent vertices of $G_{1} \times G_{2}$. Let $(u, v) \in G_{1} \times G_{2}$. Assume (u, v) to be adjacent to $\left(u_{1}, v_{1}\right)$. Let $u=v_{1}$ and u_{1} is adjacent to u.

If v_{1} is not adjacent to v_{2}, then as in the above theorem $(u, v) \in \operatorname{Co}\left(\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right\}\right)$.

Case I. v_{1} adjacent to v_{2}.

Fig. 3.10.

Since G_{1} is 2-connected, there is a path connecting u and u_{2} distinct from the path $u-u_{1} \ldots-u_{2}$.

Let it be $u-a_{1}-a_{2} \ldots a_{n}=u_{2}$. Then

$$
\left(u_{1}, v_{1}\right)-\left(u, v_{1}\right)-\left(u, v_{2}\right)-\left(a_{1}, v_{2}\right) \ldots\left(a_{n}, v_{2}\right)-\left(u_{2}, v_{2}\right)
$$

is a chordless path.

Case II $v_{1}=v_{2}$. Then $\left(u_{2}, v_{2}\right)=\left(u_{2}, v_{1}\right)$ and u_{1} is not adjacent to u_{2}. since $G_{2} K$, there is a vertex v_{2} adjacent to v_{1}. Then
$\left(u_{1}, v_{1}\right)-\left(u, v_{1}\right)-\left(u, v_{2}\right)-\left(a_{1}, v_{2}\right) \ldots\left(a_{n}, v_{2}\right)-\left(u, v_{2}\right)-\left(u_{2}, v_{1}\right)$ is a chordless $\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{1}\right)$ path.

Now let v be adjacent to v_{1} and $u=u_{1}$. Then if $v=v_{2}$, then, $\left(u_{1}, v_{1}\right)-\left(u_{1}, v_{2}\right)-\left(u_{2}, v_{2}\right)$ is a chordless path containing $\left(u_{1}, v_{2}\right)=(u, v)$.

If $v \neq v_{2}$, then v, v_{1} and v_{2} are distinct vertices of G_{2} and hence $G_{2} \neq K_{2}$ or K_{1}. Then the theorem holds as in Theorem 3.7. Now if $v_{1}=v_{2}$ and v is adjacent to v_{1}, then u_{1} is not adjacent to u_{2}. (See Fig. 3.11).

In this case $\left(u_{1}, v_{1}\right)-\left(u_{1}, v\right) \ldots\left(u_{2}, v\right)-\left(u_{2}, v_{1}\right)$ is a $\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{1}\right)$ path containing $\left(u_{1}, v\right)=(u, v)$.

Remark 3.5. The condition that G_{1} is 2 -connected is necessary. For, taking G_{2} be K_{2} and G_{1} to be a graph having a cut point c, then $G_{1} \times G_{2}$, the copy of K_{2} correspondingto c will be a clique separator for $G_{1} \times G_{2}$ and hence $G_{1} \times G_{2}$ will not be m.c.s.

Theorem 3.9. If G_{1} is an m.c.s graph and G_{2} is any connected triangle free graph, then $G_{1} \times G_{2}$ is m.c.s

Proof: If $G_{2} \simeq K_{1}$, then $G_{1} \times G_{2} \simeq G_{1}$ and hence is m.c.s. If $G_{2} \simeq K_{1}$, then using theorem 2.17, $G_{1} \times G_{2}$ is m.c.s.

