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CONVEX SIMPLE GRAPHS AND SOLVABILITY

In this chapter, we continue the study of

properties of convex simple graphs. Motivated by a problem

posed in [41], we define the notion of solvability and make

an interesting observatibn that, all trees of order at most

nine are solvable and that the bound is sharp. All trees of

diameter three, five, and those with diameter four whose

central vertex has even degree are also solvable. However,

a characterization of solvable trees is yet to be obtained.

A problem of similar type with respect to m-convexity 1is

also discussed. We then discuss about the center of d.c.s

is chapter with the study of the

graphs. We conclude th

convexity properties of product of graphs. Some results of

this chapter are in [60].

3.1 SOLVABLE TREES

In this section, Wwe introduce the notion of

jated with a d.c.s graph, to answer the

solvable trees assocC

following,
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PROBLEM [41] Describe the smallest distance convex simple

graph containing a given tree of order at least four.

K2,n is such a graph for Kl,n' For a tree T which

is not a star, let Vl and V2 be the bipartition of V(T) with

=m,|v2|=n, then K is a d.c.s graph containing a tree

However, to find the smallest d.c.s.

| vl

isomorphic to T.

graph, we note by theorem 2.4. that, for any d.c.s. graph

q = 2p-4 and the lower bound is attained if and only if it

is planar. SO. for a given tree T if there exists a

planar d.c.s. graph containing T as a spanning

subgraph, then that will be the smallest d.c.s. graph

containing T. This observation leads us to,

pefinition 3.1. A tree r is solvable if there is a planar

distance convex asimple graph G such that T is isomorphic to

a spanning tree of G.

e remarks made above, it is clear that Kl
’

From th

is not solvable. Hence, in the following discussions we

consider only trees which are not stars.
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A USEFUL GRAPH OPERATION:

y

,
/e shall now describe an operation frequently used

in this section. Let u and v € V(G). Join u to all the

vertices in N(v) and V to all the vertices in N(u). The

resulting graph is denoted by G*(u,v) and in this graph

N(u) = N(v).

Remark 3.1 If G is planar and if G can be embedded so that

u,v,N(u) and N(v) are all contained in the same face, then

G*(u,v) is planar. Also, if u and v are partners then

G*(u,v) =~ G.

Lemma 3.1. AnY path of length at least four is solvable.

Proof: Let P be a path of lJength at least four and let

u e c(p). Then Ni(u) consists of two non-adjacent vertices

for i=1,2,..-r"1 and Nr(u) is either a pair of non adjacent

vertices or a singleton according as C(P) =~ Kl or K2' where

r is the radius of P.

Now, the graph G = <u>+<N(U)>+...+<Nr(u)> is a planar d.c.s.

graph containing P. ]
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Theorem 3.2. Any tree of order atmost nine is solvable.

Proof. If T is a path then it is solvable by the lemma 3.1.

Suppose that T is not a path. Let u be a vertex of T such

that d(u) 2 3 and let N(u) = {al,az,...an}, n = 3.

Case I. Any vertex in Nz(u) is of degree one.

Assume that d(al) = min{d(ai):aie N(u)}. Choose

u'e N,(w) such that N (u) N(a )\(u'} = $. Construct
G ~ T*(u,u')*(al,az)*...*(an_l,an) if n is even and

~ ' * *.ou* ’ i
G ~ T*(u,u") (a2,a3) (an-l an) if n is odd.

eorem 2.3 and the remark 2.3, it follows that G

Using th

is a planar d.c.s. graph which contains T.

case II. There is a vertex in Nz(u) of degree at least two.

Choose u'e N, (u) such that d(u') = max{d(v):V € N,(u)} and
let N(u') = (v VproorrVpl: et M= N(u) U N(u').  Note

that, m > 3. Since IV(T)I <9, N(vi)-{u,u'} = ¢ for at

least one value of i.

Sub case 1. N{u] U N[u'] = V(T). Then T*(u,u’) = K, p-2 is

such a planar d.c.s. graph.
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sub case 2. N[ul U N[u'] # v(T), but

m
N[u] U N[u']l U (U N(v,)) = v(T).

i=1l
Without loss of generality assume that
N(vl)\{u,u'} = @.
. ] ' * *
Then the required graph is  T*<u,u >*(vl,v2) cos (vm_l,vm)

X : "
if m is even and T*(u,u')*(vz'v3)*--- (Vm—l'vm) if m is

odd.

m
sub case 3. N[u] Unfu'l U \V N(Vi)) # V(T). but
i=1

m m
N[u] U n[u'] U [ UKy U [.U1N2(vi)] = v(T).
i=1 i=

Here, note that N(vi)\{u,u'} # ¢ for at most two values

of i, say 1 and 2. Let W,€ N(vi)\ {u,u’} be such that

d(w,) z 2. since |V(T)| = 9 d(w,) can not exceed three. If

by the choice of u', we can see that W€ N4(u) in

d(wl) 3,
be the u-w path in T (That is,

1

T and let u—vz‘u"Vl'“l'

v, # N(u) and V,€ N(u'))-

* 1 t s
Now, G = T*(u,wl) (vl,v2) is the required planar

d.c.s. graph.
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If d(wl) = 2, let wze N(wl)\ {vl}, then

T*(u,u')*(wz,vl)*(vz,v3) is the required graph.

m m
Sub case 4. N[u] U N[u'] Ucu N(Vi)) Uccu N2(vi)) # V(T).
o1 .

i= i=1
Then,
m m m
N[u] U Nfu'] U ( UN(v,)) U CUN,(v,)) UCUn,(v,)) = v(T).
i=1 i=1 i=1 .
Note that, N(vi)\ {u,u'} # ¢, for only one value of i, there

is only one vertex w, in it and there are two vertices v,

and w3 such that w1w2 and w2w3e E(T).

Then, T*(u,u')*(vl,wz) is the required graph. a)

Remark 3.2. In theorem 3.2 the upper bound for the order of

T is sharp. Consider the tree T of order 10,

Fig. 3.1

A non- solvable tree of order 10 and diameter 4.
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Here, d(xi) >2 in T and hence also in G. So, by theorem 2.3,

f . »
or each X there 1is 2 unique partner xi in v(T). Now,

x' 2 G*(x, .2, * i
: aj or u because (xi aj) and G (xi,u) will
contain a triangle for i=1,2,3 and j=1,2,...,6. Hence x' can
i
Then there will be one X, for

only be xj for some 5 # i.
i

which there is no partner.

Theorem 3.3. The following classes of trees are solvable.

(a) Trees of diameter three.

(b) Trees of diameter four whose central vertex has even

degree.

(c¢) Trees of diameter five.

jnce T is of diameter three, T > 8
m,n

’

Proof:(a) S

(pefinition 1.2.), for m,n 2> 0.

Let ¢ and c, pe the central vertices and

e and N =
am} n (c2) {bl,b2,...,bn}.

let N(cl) = {al,aQ.-

Then T*(bl'cl)*(al'c2) is a planar d.c.s. graph containing

T as a spanning tree.

(b) Let diam(T) = 4 and the central vertex ¢C has even

degree.
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Let N(c) = {al,az,...,an} and c'e N2(c). Then

*(a _l,a ) is the required graph.
n n

Then T will be as in Fig. 3.2.

T*(c,c')*(al,az)*...

(¢) Let diam(T) = 5.

a BC'
Al gl
-O—
A -B,2
1 :
\ !
! '
\
UA BD
n m

Fig. 3.2

Clearly A and B, are independent sets and are nonemtpy for
i J

at least one value each of i and 3, i = 1,2,...,n and

§=1,2,... M.

Case 1. Both m and n are even.

n m
d c 'b I"l,b N
Then {°1'a1""'an} U (jU;py) and Ley0by al U GUyBy)
induce trees saY T1 and T2 respectively. Note that
o — 1] '
diam(Ti) < 5 for 1 = 1,2.Choose a ¢, from some Ai and a c2

from some Bj- Then

lan) ’ and

,bm) are planar d.c.s




and T2 respectively. Now, embed G1

graphs containing Tl

and :
G, so that cl,cz,ci,cé lie in the exterior face.  Then,

joi ' v
join ¢, and ¢ to c, and c,- Note that the resulting graph
G is planar and for each vertex of degree at least 3 there

is a partner u'. Hence G is d.c.s.

Case 2. m is even and n is odd.

Obviously, d(cl) - n+l1, which is even and

n
{Cl,cz,al,...,an,bl,...,bm} U (U3;)
form a tree, sSaY 7' of diameter four and C (T') = {cl}'

Choose a vertex 2, from some Ai. Now,
v

x *
(o g oag) ¥ (b Ry (B g iRy

1l
T* * * x, .
(ai,ci) (81,02) (82,33)

is a planar d.c¢.8 graph containing T.

nd n are odd.

Case 3. Both m 2

is a spanning tree of the planar d.c.s

Here T

graph,

X, .%
T*(cl,bl)*(cz,al)*(az,a3) ce (an_l,an)

X X
(b, by)*..* (b b).
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Remark 3.3. (i) In (b), if the central vertex has odd

degree, the result need not be true, as seen in Fig 3.1.

(ii) There exists non solvable trees of diameter six. Also,

if v, and Vv, are the bipartition of V(T) such that |v1| is

odd and each vertex of V, is of degree greater than 2, then

T is not solvable.

We ask a problem similar to the problem discussed earlier.

PROBLEM: Find the smallest m.c.s. graph containing a given

tree T,|T| > 4.

1I£ T = Kl,n;n z 3, K2,n is such a graph and its

size is 2n.

e of the amallest m-convex simple graph

Theorem 3.4. The siz

containing a tree T # (Kl,n) satisfies,

p-1+(m/2) £ a = p+m-2, where |v(T)| = p and m is the number

of pendent vertices.

Proof. Let Y, be a pendent vertex of T and v be the vertex

adjacent to Y, Let u2’u3""'uk be the other pendent

Let V ,v2,...v£ be the pendent

acent to V- 1

vertices adj
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vertices other than u.s. Add edges to T such that

{uguy, ey, vl'vz""'vt} induce a tree in which
{ul,uz,...,uk} and {vl’vz""'vl} is a bipartition. This is
possible by taking a spanning tree of Kk 3 The resulting

graph is triangle-free and neither a vertex nor an edge can

by theorem 2.12, G is an m.c.s. graph and

separate G. So,

size of G is p-1+{+k-1 = p+m-2 where m is the number of

pendent vertices of T. So size q of the smallest m.c.s.

graph is atmost ptm-2.

Now, note that m.c.s. graphs are triangle free

and hence all vertices are of degree at least two.

blocks
Therefore, to make T a plock, the degree of each pendent
at least one. So, at

vertex is to be jncreased by

least[—T—1edges are to be added and hence
2

m 14T
qu-nrﬂ > pl*y- 0

The following example illustrate that there are

Consider the tree T in

bounds.
g both the bo 1

trees attainin

Fig 3.4.
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EE;;D —0 Here p=9, m=6

Fig. 3.4

The graph G in Fig 3.5 is an m.c.sS. graph of size

q =11 = p—1+g , containing T.

- Fig. 3.5

e tree T, of Fig 3.6. In T '{xl'x2} is

consider th 2

a clique such that TN {xl'xz} is totally disconnected. So,

to get an m.cC.S. graph at least five edges are to be added.

So, q = 13 = p+m-2.

71 ) X X °

Fig. 3.6
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3.2. CENTER OF DISTANCE CONVEX SIMPLE GRAPH

In this section, we determine the center of d.c.s

various type of graphs

graphs. Properties of centers of

have been discussed by Chang [23], Chepoi [30], Nieminen

[55], Prabir Das [63] and Proskurowski [64].

d.c.s. graph of order at

Theorem 3.5. If G is a planar

least four, then,

(1) G is self centered if diam(G) = 2.
(2) diam(G) * 2rad(G) or orad(G)-1, if diam(G) > 2, c(G)

or C4 according as

is isomorphic to K2

diam(G) = 2rad(G) or 2rad(G)-1.)-1.

Proof: (1) Let G be 2 planar d.c.s. graph with diam(G) = 2.
It follows from cl of Theorem 2.1 that rad(G) > 1.

So rad(G) = diam(G) and hence c(c) = V(G).

(2) Suppose diam(G) > 2-
Case I: diam(G) = ok, k > 1
Let u,vV € v(c) be such that d(u,v) = 2k and

v be a shortest u-v path. Then by

-
-

= - - ".oo_-a
u ao al 82 2k
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Ccl and theorem 2.3, we get another u-v path

82k= v

Note that e(ak) > rad(G) 2 k. Let w be

where a{ and ai are partners for

i
QO

NS TR ) £51
i=1,2,..., 2k-1.

u or v then

a vertex such that _d(ak,w) = e(ak)- If w

k) = rad(G). Note that

e(ak) = k, which implies e(a

e(ak) = e(aﬂ).

1f w # u, v suppose that I(v,w) contains a or a,

(note that if I(v,w) contains a, it will contain aé also).

Then d(v,w) = d(v,ak) + d(akrw) = k + e(ak) < 2k. This
imply that e(ak) - k. Similarly for I(u,w). Hence in these

rad(G) . if neither 1I(u,w) nor

two cases e(ak) = e(ai) =

ntains these vertices, consider a shortest u-w path

I(v,w) co
and shortest v-w path. Then using Cl and theorem 2.3 it can
pserved that there is a subgraph homeomorphic to K3’3,

k = rad(G), that is {ak' ai} is

be o
Hence e(ak) = e(ai) =
contained in C(G).

Now we prove that these are only central

1f there is some other vertex, say ¢, in  ¢(q)

and d(c,v) £ rad(G). But, since

vertices.

then d(c,u) = rad(G)
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d(u,v) = 2rad(G), d(c,u) = d(c,v) = rad(G). Thus we get a

u-v path which is different from the two paths mentioned

earlier. Now it can be observed that a  subgraph

homeomorphic to K, 4 is contained in G.

’

H - "
ence C(G) {ak,ak}

Ccase II: diam (G) = ok+1 for some k > 0.

As in the case I, if u and v are such that d(u,v) = 2k+1 and

= Vv

= -a, - - - -~ v and u = a_ -a;-...- ' -
u = agTagTees a,, " 3ok+1 0"21 a1
are the two distinct paths then rad(G) = k+1 and

c(g) = {ak ,aé 18y 41 ,a£+l which will induce subgraph
isomorphic to C4. o

Remark 3.4. Planar d.c.s. graphs resembles trees in

its radius-diameter relation and center-diameter relation.
For a tree T,C(T) = K, or K, according as diam(T) is 2rad(T)
or 2rad(T)-1. For 2 planar d.c.s. graph G also,

c(G) is R2 ~ D2(Kl) or C, = D2(K2) according as
diam(G) is orad(G) or 2rad(G)-1.
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3.3. CONVEXITY PROPERTIES OF PRODUCT OF GRAPHSB

In this section, jt is proved that the property of

being distance conveX simple is not productive. However,

m.c.s graphs behave nicely.

Theorem 3.6. Let Gl(Pllql) and Gz(p2lq2) be two distance

' Then O,X G, has exactly

convex simple graphs.

+ +q_+ non trivial d-convex subsets.
IR DAL IRAPAS R

Proof: Let Gl(pl'ql) and Gz(p2,q2) be two d.c.s graphs.

Let A be a conveX gubset of V(G1 X G2).

Claim: A = Alx Az where A1= {u:(u,v) € A} and

A, = {vi(u,v) € A.}. To prove that A X A, < A.

there is a u &€ A
e Az' Then 0 1 and voe A2

,v) € A and (u,vo) € A.

L e A,, V
et u 1

such that (u0
-u be 2 shortest uo-u path in G1 and

Let uo-ul— LU
vo—vl, ,V, ~V be a shortest vo-v path in Gz. Then
(u ,v)..(u 'v)-(uz,V)...(uzlv)r(u'v)_(urvk)..-(u,vl)-(u'vo) is

ce (u,v) € A. Therefore, A = Alxhz.
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Now, even if Ai js a trivial convex set in G, for
i

need not pe trivial. Thus the non trivial

i=1,2,
Alx A2

convex subsets are {x} x V(Gz), where x is in V(Gl)'
v o
(Gl) x {y} where y is 1R V(Gz): {x;" X2} X V(G2) where
X X, € E(Gl), V(Gl) X {yl,yz} where Y,¥, € E(G,) and
| G d
{xl,xz} X {yl,y2} where X;%, € E(G,) and ¥;Y, € E(G,)-
Number of such convex sets are Pl'p2'ql'q2 and qlq2

X 62 is k-convex where

respectively. Hence G1

k = + .
s PRLSRAY 9,9,

Let G and 02 be connected, triangle free

1
or K, for i = 1,2- Then G, X G, is m-convex

Theorem 3.7
graphs.Gi i Kl

simple.

triangle free graphs.

: ~ K., be connected,
Proof: Let Gi Kl 9
NOte that, if ul_uz—- o ."'un and vl—.vz_ooo—vm are chordlesS

paths in Gl and G respectively, then
- . ,V - ’ - e
(ul,v1)~(ul,v2) conm(uy m) (v, vm) (un,vm)
is a chordless (ul.vl)—(un,vm) path in G, X G,
ve that G ¥ G, is m.c.s, it is enough to

To pro
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prove that any (u,v) in V(Glx G2) igs in the m-convex hull of

any two nonadjacent vertices (ul,vl) and (u2’v2)' Now, it

lie on a

can be easily seen that (ul,vz) and (u2,v1)

- ath.
chordless (ul,vl) (uz,Vz) P

Assume without loss of generality that (u,v) is

adjacent to (ul'vl)'

(u,v) S O(U,Vz)
---------------------------------- (u,,v,)
i |
| |
| memememmmmmTTToTEETETETTTT o(u,,v,)
(U2lvl)o ----- 2 2

Fig. 3.7.

-u, path say ul-u-al...an- 9

!
=

If u is on any chordless Yy

,Vl)-(u,vl)-(al'vl)'"‘“2’"1)"°(“2'V2) is a

then (u1
v2) path containing (u,vl) = (u,v).

chordless (Ul'vl)'(u2’

that u is not on any chordless path connecting
e a

3.7)-

So assum

gee Fig:
uy and u, (
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Ca . j .
se 1 le v, and v1 is not adjacent to v2
Then (ul,vl)—(u,vl)...(u,vz)(u1v2)...(u2,v2) is a chordless

(ul,vl)-(u2,v2) path containing (U,vl) = (u,v).

Case 2. vy is adjacent to vy

Then there is vertex v3 in G2 different from v,
to be adjacent to vy Then,

and v, because G2$ K, Assume V,

(u,v,)
;ol —o(u,v.)
(u,vg)o )
(ul,vl) o v
(ul,v3)| I | 1' 2
| ' '
| ' '
[_______,,___.__——é é(u v,)
(u2,V3)0 ("2"’1) 2°°2
Fig 3.8

). .. (ul,v3)"(urV3)"(u"’l)‘(u'vz)'(ul,vz) is a

(uz,vl)”(u21v3
)

path containng (u,v) (See

chordless (uz'vl)'(ul'v2

Fig 3.8).
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That is

(u,v) € Co({(uy,vy) (uvy)H) < co({(u;,v;) (u,,vy)h).

If v, is adjacent to V,. then

(ul,vl)-(u,vl)—(u,vz)—(u,v3)"(ul:v3)---(u2:V3)"(‘12,V2)

is a chordless (ul,vl)-(uz,vz) path containing

(u,vl) = (u,v).

Case 3. v1= v2. Then (u2,V2) = (“2'V1) and ul is not
adjacent to U, since G, o Kl'K2 there are two vertices

v, and v, in G such that <{v1,v3,v4}> is connected.

Let v, be adjacent to V; and V- Then
(ul,vl)—(u,vl)-(u,v3)'(u,v4)‘(u1,v4)...(uz,v4)
’(uz'VB)_(u2'v1)

-(u vl) path containing

and V,- (see Figure 3.9.)

Now, let vl be adjacent to v3
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( (ul,v3)
u,v )0—————~——————————0 —————————————————
°(u2,v3)
(u,,vq)
(u,v J—__________—__.,ﬁ—-—l--l __________
l) (L(uz,vl)
(u,v,) J__/————"""b ————————————————— é(u.v,)
4 (ul,v4) 2 4
Fig 3.9
;t is clear that (uyV ) and (“1"’4) lies on

From Fig.3.9-
onnecting (Ulnvl) and (uzlvl) because

rdless path c
. Then

v4)—(ul'v4)

(“1"’3) (u,vq y-(u,v)- -(u,
is a chordless (ul,v3)’(u 'V ) path.
v )I(ullv4)}) C CO({(U. 'V ) (u ,V )})

Hence (u,Vv) € co({(uy-
(u,v) € Co({(ul,vl)(UZ'V2)}) and so

Hence, iD any case
0

- 1,2 be connected triangle free

i
6.,# Ky then G, x G, is m.c.s
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As in the proof of theorem 2.16, let (ul'vl) and

t vertices f .
er o G1 X 62

(u

,V2) be two non adjacen

2
me (u,v) to pe adjacent to (ul'vl)'

Let (u, € G_.. Assu
(u,v) € 6;x G,

Let u = v, and u,; is adjacent to u.

then as in the above theorem

If v. is not adjacent to Vi

(u,v) € Co({(ul,vl)(u2,v2)})-

adjacent to v,

Case 1I. v
1

|
1

(u,
Fig. 3.10.
a path connecting u and u
since G, is 2—connected, there is 2 P ,
th l.l"ul -u2¢

distinct fr
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L

et it be u—al-az...an= u2. Then

(u, ,v,)-(u, - -

1 l) (\l Vl) (u:vz) (al'v2)'"(an'v2)~(u2'v2)

is a chordless path.

to
vl. Then

(u,, - - -
vl) path.

)...(an,v2)-(u.v2)-(u2,vl) is a
)

chord -
rdless (ul,vl) (u2,

Now let v be adjacent to vland u =y .
Then if v = V,» then, (“1'"1)"(“1'"2)'(“2’V2) is a chordless
path containing (ul'v2) = (u SV

If v 2V, then V.Vy and v, are distinct vertices of G, and

k.. Th

1
and v is adjacent to Vv,. then u, is not

en the theorem holds as in Theorem

hence G2 2 K2 or

3.7. Now if vy = v,
adjacent to Y,- (see Fig. 3.11).
(u,v)
(ul,v1)7~———————————————?
] |
| |
'/———3’( )
u.,v
(o ’
(u2,Vl) 2
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In this case (ul,vl)—(ul,v)...(u2,v)-(u2,vl) is a

(ul,vl)-(uz,vl) path containing (ul,v) = (u,v). o
Remark 3.5. The condition that G1 is 2-connected is
necessary. For, taking G2 be K2 and Gl to be a graph having

a cut point c, then Gl X G2, the copy of K2°°Treébondingto c

X G2 and hence G1 x G,

will be a cligue separator for G,

will not be m.Cc.S.

Theorem 3.9. If Gl ijs an m.c.s graph and G2 is any

jangle free graph, then G1 X 02 is m.c.s

connected tr

o~ and hence is m.c.s.
Proof: If G2 o~ Kl, then G1 X G2 o~ Gl m.c.s
1f G, > Kl, then using theorem 2.17, Glx G2 is m.c.s. o

2



