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CONVEXITY FOR THE EDGE SET OF A GRAPH

in this chapter we introduce a notion of convexity
.  . ,.t of a connected graph. This definition isfor the edge set o

of edge lattice of a graph
motivated by the concept of

.  .41 Though there is a vast literature
discussed m L^J*

.  different aspects of convexity for the vertex setconcerning difi

,  ,,,Ue worh is done on similar lines for the
of a graph,

edge set.

.  . observe that this convexity on E(G) inWe first observ

.  the exchange law and hence is a matroidaddition satisfie

. 10. ...o. 1"(Definition l„d„e.d by en inletv.l. It 1.
fhe convexity

"^t tb. Cftbeodoiy n-b.i Of • =«-.« .tinetni. t.known that

,  for its arity-
an upper boun

have evaluated the convex
in this chapter,

«  structure. The Pasch Peanoj this convex scru
invariants o discussed and also a

fDefiniti°n I ■ 'properties .,,fion Some results of this
h characterization.

forbidden subgrap

in [61]•chapter are
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4.1 CYCLIC CONVEXITY

r  4. r - fV E) be a graph with E 4> .Definition 4.1 Let G - ^

..lically convex if it contains all edgesS ̂  E IS cyclically

•  • ^ cvcle whenever it contains all but one edge ofcomprising a cycie

this cycle.

,  s is convex and if
Equivalently

a e S and a a e E then a^a^ also will beln S
®1®2'^2^3 '^n-1 n

,  is an edge of G for i = 1-2 n-1.
where a.a•.i

1 1 + 1

convex

For

red

fhe collection of all suchIf % denotes th
tr* is convexity space. F.  p. then (G.5^

subsets ot ^ ^

,h. cclic •"convenience r

to as convexity.

rp every subset of E(T) i:
I  . fa) Fcr a tree

Example .

trivially convex.

<b) i»
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Fig 4.1

{x^},{x^,X2} are convex but {x^-x^}
a generalization of the notion of

Now, we shall consi
v.»r (Definition l.U) of an interval

geodetic iteration numbe
.o a convexity apace of arity greater than

convexity space

two.

.  „ be a convexity space of arity n (n>2)
Definition 4.2. be

, <5 denoted by (S) is defined as
and S c X The closure of -

,  is recursively defined as,y  |f| ̂  n}• s IS
(S) = U{Co(F)-f^ allest positive integer m such

1  m The smallest p
S= (S)' ®' number of S. The

at S =s
m+1 iis ca

u.d th. it.t.tlon »-b.. Ot s.
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.  X is defined to be n,ax{iteration number
iteration number or X

of S : S £ X} if it exists.

fr the iteration
X 1 For the convexity space (G,X)-Lemma 4.1. For uxi

number is equal to 1-

. that for Sc E, 8=^= It is obvious
Proof: we shall prove that

«2. (gl). Then, there is a sequence
that S^C 8^ bet e e S - 1

A  = a , a in S such
= a a , e,= ®2®3' "

of edges say l 2 2 ,-1, r, for each
, rvcle in G. Then, for eacne} forms a eye

that

i = l,2,....n-l-
1  2 e = ^4 ^ ̂

1  e = a- il^H ^
8. = {e., = a.a,, 12 x

j comprise a cycle in G. Now,
such that {e4'®il ' '•'^i ,

4„ s which contains a
a  sequence m i

IJS xsobserve that ^ , oath joining a and a .
1  2 e 1

subsequence e i« in G and so e ^ S .
i  forms a eyeie

Hence, {®® ' * * ' ' °

2  ̂
Thus, S = S •

is 1 if O ® "
^4ty of (G'*)

Theorem 4.2 The a largest minimal cycle in G,
the si''® ^ ^

one less than t

otherwise•
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Proof: If O is a tree, then the lemma is trivially true. So

t. 1 rvKanVi havino 3 cycla. Lst k bo lilio sizo of
assume G to be a grapn navxny «

th, ® '■
Co(F) c s <.r s. lfl i k-l- Th-nb, 1.™,,
4.1, th.r. 1= . =.W»" fl-'l 't' ""*• "■ '
lh.l (.,,j ''

i-u«« fp e . . .wC } comprise a
comprise a minimal path, ' ' 1 t

,  i_ f < k-1. Hence/minimal cycle and hen
e  If e, re comprise a path

e € Co( / • • • ' ®t

1  b„,d ...u.. tMl. CO"-' <= » ' '■ *0having a chord, as

K  . f this path such that there is a sequencebe a chord of this y
and {ej,,e e. }

®i .' "l ^i ^ '
1 2 3

comprise a minimal cycle.
/  e, } ) ̂  ® *

Then e .< k-1 i^^
3

\  comprises a cycle of
e }\{®• ' • • * ' i .

Now, ^ ^

,  .„d . . C«C(.„.Oi •,»•= = '>''
1.0. th."

i«, Hence, aixi.j
induction hypothes

1, ..m. "■
Mi^U . 1 ̂ It
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th.„ 1,1 S . E(C,)S X. X IX .» '« ■">"
1. r-xxCPl c. S for each subset ofS is with the property that Co(F) c

.. I, 0 but S is not convex. Hence, thecardinality at most k-2,
less than the length of some largestarity of (G,«) is

in G Hence arity A(G,«) = k-1. dminimal cycle m G-

nsider the concept of rank of aWe shall now consider tn
vex structure X, a nonempty subset F£ X ismatroid. For a con

X te Co(F\ {x}) for each x e F.
convexly independent P^ov

.  . ..txold 1.15) ".«• •Further, if X is iioH a
W  t of X and such a set is called a

maximal independent su se
.  , The cardinality of the

basis of the matroid.
called the rank.

•j V the hull of a basis equalsin a matroid X tnTheorem 4.3[12]' ,i4nality
o the same cardinality.X have tne

X and all bases

the following-„„„ ». pxo" ""
. „nn,ol.d gr.pl-. ll'" " *

^  . If 0
Theorem 4.

D = |V(0)| -rank p-1- where ,,nug from the fact that
.  a matroidProof:(G,«) 19 ®
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{P,q,x, , . . . ,x } comprise a cycle, p e Co({q, , . . .,x^}) and
1  n

q € Co({p,x^, . . . •

rank (G) = p-1- Let T be aNow, we have to prove that rank

^ ^ j 1 F = E^T). Then each pair ofspanning tree of G and let F - r-u;-

by a path in T. Now if e € E(G)
vertices in G is connected oy

i>v%Am IS a seguence e /» « «/e of
such that e « E(T) then there is a q ^

unn the end vertices v and v . That isedges in F connecting 1
_  rvcle. Hence E(G) = Co(F).

{6^,6^ e^} comprise a eye
Hence, rank (G) ̂  P'L.

,  , p c E, be such that |f| < p-1. Then
Now, let F c ^

V  in G such that it is not
there are two vertices v^ and v^

1. mnrised by edges in F. If e ,...,econnected by a path comprised 1
„ G which comprise a path joining v^ and v

are those edges i

r„(r) then by lemma 4.1 there is
and if '

.  p which comprise a v^-v^ path which is
sequence of edges id

□

a contradiction

.  di.,connected, then (0,S) is a matroid of
Corollary: If ®

^  -g the number of components of G. □
rank p-k where ^

k

s  a
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4.2 CONVEX INVARIANTS

ariants (Definition 1.18) of (G,«)
The convex invariants

c(G), r(G) and e(0) respectively,
will be denoted by h(G), d

._t-d graph of order p, the Helly
Theorem 4.5. If G is a connect

number of (G,^) ^

Pr.of: L.l T b. . «•»»""
b. ^ p is H-independent.shall prove that t

.  every e in F. Then by the1  every
let e € Co(FN{e)iIp®! e<= „-aa . e = a„a, ,a segueno® of VV2' 2 2 3

lemma 4.1/ there i 1 _ for some e in F.
.  ̂fe) such that e =

®n-l= ^n-l"n Again using lemma 4.1,
j e^e Co(FN(®^^^Then e^€ F and ^ ^ a a^ ^'2^,3 ®l,k

we get another segu 1, gfnce ®j'®i'"" ''®n-l
This is distinct paths joining

fhen compJ^i®®
•1,1 -i-k"" "

f n. Hence f (l
a  and a of ^ •
1  n

h(G) ̂  p~l*

t  F of cardinality at
ve that any su

Now, __e F contains a subset,
in this cas

least p IS n

= a, , a
1, k n
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a  cvcl© ® and
C= {e^,e, comprising

h e in F and i = 1/2,..- /k- Hence,
e.€ Co(F\ {e}) for

Pi is not empty. Therefore, F isn {Co(F\ {e})/e e F} l
,  . /QXp. Thus, h(G) = P'l- °

H-dependent and so ht )

.™v,or of {G,») is given byf^aratheodory number ot \ /
Theorem 4.6. The

' f. c is St tfc®

^  fherwise, where Circ(G) is thec(G) ~ ^ ° circumference of G.

.  then."""""'"' ' "

u p<- E With cat
Hence for each " — — i

,1 co(rs (•>)■ '
co(P) = PC.

. l=ap..t °
"  . . ). Th.n

S= E(C) = {a^a2'^2®3'" ^ ^ ^ 1,2,....^.
\) for each

a. a. _€ Co(S\ + i
1 i + 1

Let S.= (S-CaiSi+l^^'
1

/e V. {e^}) A^^ we get a sequence0 Co(Si^ ^ i lerma 4.1 we gClaim: ®i ®i+l r g. })' s -{e. >
If a.a. Co(Si ^ s in i ^1 1 + 1 edge g This is not
'i'®2 '^i j compris® n cy

+
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. _ _f 4-Vip edQ6S of 3 path
possible because S-le.) consists of th

I I io v/o ^*6 € S.} and so c(G) ̂  k-1.only. Hence, Co(S^)<= U Co(S^S{e^}. ^ ^
1. E of cardinality ati.t s b.. .bb..t »i ^ ^

. ,s, ..b. »•=-('
least k. Let e € Co(S;.

^  S there is a sequence£  ̂af ^inS. If ® ^
for some e ®

e  > comprise a

e  ... e in S such that 1'^
l/l' ' i/'^ 0 } because of the
cycle in G. Also, S ̂  t®!,!

.  Let ^ S - C®!,!maximality of C. ^ ̂  ^
e € Co(S \ {e^}) □

( s k""!*
c(G) < k-1. Hence,

«ted graph of order P, ther is a connected g
Theorem 4.7. 1i

Radon number of v
and let F=E(T). Then.  « tree ®na

a  spanning
Proof. Let T be a guch that

.itioned into i
if F can be Co(F, )n Co(F ), then

.  and if ® ^ 1 '
Co(F^) n ^
there is a seq« e,ej^j^, • • • '®i;

such

«21 ^2m^" ^ ^ ,,oles.
compris® vertices of e and

'■*21 *
e  ®t® ^ 1 contains a sequence21 e,,

, ,e-/' 2a
hence ^®il' * * '
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1. which is not possible. So P cannot havecomprising a cycle, wn

a Radon partition. Henoa, r(0) ̂  P 1-

PC E(0)
Now, let F ^

...,e } comprising
i-tains a subsequence {e^^p-1. Then it contain

e.e Co(F\{e}) for i = 1 S.
1  r* mliP'n f ® ^i' ^a cycle C. Tnen x ..

,  „ CC0(FS '2
Also e € Co(E(C) ̂  ®i , f„ > c F ■ Then

{e.} ^ ^"1 i ^
be such that E(C) 1 ^ Therefore, Radon

)  Hence, r(0)
e  e Co(Fj^) f) 2 o

number r(G) ' p-1-

u c the exchange number

For a connected grap
Theorem 4.8- g cycle

_ 2 if ® ®
is given by e(G) = , v e V(G)}, otherwise.

= max {Ciro(0-v>-

Proof: this case, every subset F of
_  t f *

Casel: Let G be a F = {0,-02}- Then

E(G) is convex- ' E-lndepondent. If |F| 2^ 3,
a  hence F

I e K (a-)' 'F\{e }f' ^ 2 Then,
^  e -P>'

let F = "
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Co(F \ {p}) = F \ {P} = t®l ®n^

. (.1
... U fj.-s •»' "

c U { F S {e^}) •
r  \\ • p?^P/ e^F).

Hence, Co(F\{p} ^ ^

,vcle. Then either F=E or F has no
Case II: Let G be a cycle

^Kising a cycle,
subsequence compr

,  .1 = F for each e in F. If F E,
If F = E,Co(F\ {«})

„„rising a cycle, each proper
no sequence comprisingsince F contains x j = as in the case of a

conveK and so proof is
subset of F exchange number is 2.

tree. Hence tor

.  , cycle -C and a vertex v
cnh having a cy

^  4« a grapn
Case IIIJ ^ ̂

not in ^C. generality that 'C is the
without loss

Assume w J 1 at V be a vertex not

.  property and let v
.ith this proF

longest cycle w e V for i = 1.2, n.
-a • -^n" 1' ^

.  s '^2 ^in C. Let C i 2 . to v and let
j-jacent ru

,  o verte* ® -if is clear that
Let u be a vei. it is

a  a_  ....an-l "
S = {a^a^.aa 3'

a a e Co(S)•
n 1
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^  /c Nv fa a }) i = l,2,...,n. IfClaim: a a^ ^ Co(S \ + j
IJ fa a } contains a sequence comprisingnot, (S \ {a.a.^^}) U {a^a^i

h- h is not possible. Hence a^a^«f Co(S \ {a.a.^^})a cycle, which is not f

s i3 E-independent and the exchange number
for any i. Hence S

.lity of S, which is equal to n.
is at least the cardin

U3et of cardinality atleast n+1.Now, let S be a subs
e }, m i n+1.

say S = { / • • • ' m

/O V fe 1) fof
Let e e Co(S \

/<- vv fe .})To prove that e e C° 3 4 l we get a sequence
Since e e ColS j e', comprise a

.  > such that e,e^
e; e^ in S S {«!>
cycle.

„ II iels {e^} comprise a cycl<^.y, then S U let ^ i
If SN {e.} = ^ contradicts the maximality of C.
of length m ̂  i*'*'! {e.} say

.  a subsequence of i i t fSo, there is a s ^ ^ comprise a cycle. Let
f  / ̂  2 ' ' ' ' ̂

such that F = t®'®i' 1 ce S is E-dependent and
^ g Co(S N t«>>-

f c S S F, then e ̂
Thus e(G)-"'

SO e(G) ^ '

.rated in
, are

These theorems
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ao

Fig. 4.2

V. o Circ(G) = 6' t Circ(G-v): v e G} = 5in figure 4-2, Circit>;

Let F =

Then Co(F) = E(G),

Co(F \ {e^^}) - t 2' 3 4
j) = {ej^,e3,e4'®5'®8'®9^'Co(F S {e^

/  n = {e,,e,'®4'®5'®8^'Co(F \ 1^2 ^ 1 2
_  fi 1 aii^^

f  \\ = {®i' 3' 5Co(F \ {e^}) 1 2

/  n = {e,,®2'®3'®4'®9^-Co(F \ ^ 1 ^

ci is empty.

fe } I * ' ' 'Also PI { CO F N 1 Actually, It is a maximal
H-independent ®®t.

So, F is an H i""

#- and hence/H-independent se

fi'l = P'^*h((G,«)) = 5= 6
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P is R-independent, because for any partition F^and of F,

Co(F^) p CoCF^) = Hence F is an R-independent set and it

is maximal. So r ((G/^)) ~ ^ -p-1.

F is C-independent because egS Co(F) and Cgg Co(F \ {e.})
for any i = l,2,3,4,5. fllso F is maximal. Hence C((G,X)) = 5.

^ cckCF fe.}) and
P is E-independent because 1

-o 4 5. Here also F is
^ Co(F \ {e^}) ' '

n^aximal . Hence C((G,^)) "

omnle we have h=c=r = e=5.
Note 4.1. (a) In this examp .

.K oraph a is Hamiltonian, then(b) If graP"

h = c = r.

4.3 PASCH-PEANO PROPERTIES

»hall consider the Pasch Peano
in this section we sh^  ig possible to express the

1  OQ ) . It
*:^nitionproperties (Defmi convexity space by

ties of a
Pasch Peano proper convex hull operator.

orator hy

r.pUcl„, th.

pasch peano properties of
„e disouss theHere we

(G,«).
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Definition 4.3. A oonveKity epace X has Pasch property if,

for a,b,t,a\b^ ̂  X such that a^^ Co({a,t)), b^. Co({b,t)),
then Co({a,b^)) n Co({a\b}) ̂  ̂  and X has Peano property if
f  u fhat u € Co({a,b}), v € Co({d,u}),for a,b,d,u,v in X such that

I.U ^ rin such that V € Co({a,w}).there is a in Co({b,d})

we .h.ll d.n.f th. .a...

Theorem 4.9. The convex
tructure (0,8) a Pasch space if

and only if K. - *
4

Ptoof: If K - X is a gtaph
4

vt = f, uw = d, VM = 9 and wt

fig 4.3).

induced graph of G,

let u,v,w,t be such that uv = a.

= b are in E and ut f? E (See

u o

a W

Fla



107

Then d € Co({a,g}). f ® Co({b,g}) and

Co({a,£}) f) Co({b,d}) = 0

fhat K -X ia not a subgraph. LetNow assume tnat

.  .u-t d e « Co({a,g}), £ « Co({a,g}).
a,b,g,d,£ € E be such

,  b g then a,b,d,£ and g will beIf d ̂  a, g: f '
ir - X is not an induced

9  Since K. *
as shown in the rf h (

^  f}) n Co({b,d}). If d=a (orI. ^ F and ut € Co({a,t/; n
subgraph, ut e E

,  co({b,«i}) n "i£ £=b), clearly Co({a,£}) Q
=  Co({b/a/^

then £ e Co({b,g Pasch i£ and
ihe theorem. 1^',  j. Hence tne3„ induced subgraph o£ 0.

only if "

i...re (G/«) is a Peano space if
„«ex structure V".The convex

Theorem 4.10. « - x as a subgraph.
not contain ^

if G does not
and only

as a subgraph. Then O contains
. r contain , a

Proof: bet G figure 4.A .
Hic to tne y

u isomorpbi''
a subgraph
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Fig.

/f hi) f € Co({e,d}).^  . e € Co({a,b}^
eiich that e

In O, a,b,e,d,£ are sue Co({b,d}) ={b,d}
•hie to find a 9

But it is not possi

such that £ « Co({a'9))

Now,
let G be

isomorphic to

condition.

4-811 n no subgraph
,ph which contarn

be as in the Peanoa,b,d,e,£ he

e=a or b, then the proof i

1. so oo .
„ a .od a

d,) "•""V.Vs.s.-" " "
d d and »

aeent to « theorem,

not posst''^®

If
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. ,, observed that for matroids Peano
Note 4.2. It can be easily

Tn particular, (G,«)
Pasch property. ^property implies the P

U 4. Is a pasch space. The
is a Peano space implies t a . .

»  ■ =. nasch space which is not
4- frue (K..''®)converse is not true. 4 ^

4 9 and 4.10.
a Peano space, by theor


