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CONVEXITY FOR THE EDGE SET OF A GRAPH

In this chapter we introduce a notion of convexity

for the edge set of a connected graph. This definition is

motivated by the concept of edge lattice of a graph

discussed in [4]. Though there 1is a vast literature

concerning different aspects of convexity for the vertex set

of a graph, l1ittle work is done on similar lines for the

edge set.

we first observe that this convexity on E(G) in

jes the exchange law and hence is a matroid

addition satisf

(Definition 1,15)- Also, its arity is not in general two

onvexity is not jnduced by an interval. It is

number of a convex structure is

and hence the ¢

known that the Caratheodory

an upper pound for jts arity.

we have evaluated the convex

In this Chapter,

£ this convex structure. The Pasch Peano

invariants ©
20) are also discussed and also a

efinition 1.

properties (D
some results of this

forbidden subgra

chapter are€ in [61]-
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4.1 CYCLIC CONVEXITY

/

Definition 4.1 Let G = (V,E) be a graph with E # ¢ .

sc E is cyclically convex if it contains all edges

comprising a cycle whenever it contains all but one edge of

this cycle.

Equivalently if s is convex and if

e S and a _a, € E then a_a. also will -
3132,3233,...,an_lan n 1 n°1 bein

where a.a is an edge of G for i = 1,2,...,n"1.
i i+l

1f 8 denotes the collection of all such convex

subsets of E. then (G.%) is convexity space. For

]ic convexity omn E will also be referred

convenience, the cyc

to as convexity.

tree T, every subset of E(T) is

Example @ (2) For 2

/ trivially convex.

(b) In the graph G of Fig 4.1,
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Fig 4.1

neraligation of the notion of

all consider 2a ge

Now, we sh
(pefinition 1.11) of an interval

geodetic jteration npumber
greater than

convexity space to 2 convexity space of arity

two.

o . . ! p ()f a

and s ¢ X.
Sm is recursively defined as,

(s) = U{co(F):F < x,|F| £ n}

m—l) The smallest positive integer m such

m
st- (s), § = (s
+1 is called the iteration number of S. The

m
that 8'=8
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iteration number of X is defined to be max{iteration number
of S s € x} if it exists.
Lemma 4.1. For the convexity space (¢,8), the jteration
number is equal to 1.
2 1 , ,
Proof: We shall prove that for Sc E, g= s°. 1t is obvious
that glc s°. Let e € 82= (sl). Then, there is a sequence
. 1l
- e = a,2 ;e r® = a a in 8  such
of edges say €;~ alaz. 2 293 n-1 n-1 n
that {e,,e e l,e} forms a cycle in G. Then, for each
1’€27° 77" n”
i=1,2,..-»0"1 we get.
2 Ky
1 = a a } 8
_ - , e, = a,. a"'."e'k. i i+l
Si = {eil aiai 12 i 1 1 i
e } comprise 2 cycle in G. Now,
such that {ei'eill..., iki
in S which contains a
is a sequence i
observe that U Si o
. el e2 'em forming 2 path joining a and a_
subsequence , € 10
1
i ¢ and so e € S
i m} forms 2 cycle 1D .
Hence, {e.® yore €
2 1 o
Thus, S = S
jty of (G.%) is 1 1f G ijs a tree and is
Theorem 4.2 The arity
of the 1argest minimal cycle in G,
ge
one less than the st

otherwise.



95

Proof: 1If G is a tree, then the lemma is trivially true. So

assume G to be a graph having a cycle. Let k be the size of

the largest minimal  cycle. Let S ¢ E(G) is such that

Co(F) ¢ S for Fc S,|F| < k-1. Let e € co(S). Then by lemma
.,et} of edges in S such

4.1, there is a sequence {el,ez,.

that {e'el"°"et} comprise a cycle. If {el,ez,...,et}
path, then, {e,el,...,et} comprise a

comprise a minimal

minimal cycle and hence t < k-1. Hence,

...,et})c s. 1If 170"
co(F) ¢ 8 for |F| < t. Let e/

,e, comprise a path

e t

e €
Co({el,ez,
assume that,

having a chord,
such that there 1is a sequence

be a chord of this path
i PR 2 ) e {lle""t} and {e Ie l'--,e,
ei ,ei ,...,ei., 11, Ji 0 il 1.}
1 2 J J

comprise a minimal cycle.
Then e < k-1 and €,€ co(e; ,---,ei.})C 5.

i 0

J 1 J

..,e. ) comprises a cycle

Now, {e,eo,el,...,et}\{eil' lj Y of

e € Co({eo,el,...,et})c S by

length less than t+1 and
induction hypothesis- pence, arity of (G,8) = k-1.
gest minimal cycle in G,

. : ome lar
Now, 1f ck 18 9
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then let 8 = E j
(ck)\ x, where x 1s an edge in the cycle. Then

rty that Co(F) < 8 for each subset of

S is with the prope€
cardinality at most k-2, put S is not convex. Hence, the

s one less than the length of some largest

arity of (G,8) i
minimal cycle in G. Hence arity A(G,8) = k-1. o

ow consider the concept of rank of a

We shall n

matroid. For a convex structure X, a nonempty subset F& X is

provided X @ Cco(E\ {x}) for each x € F.

convexly independent
a matroid (pefin

and such a set is called a

Further, if X is jtion 1.15) there exists a

maximal independent subset of X
The cardinality of the basis 1is

basis of the matroid.
called the rank.

matroid X the hull of a basis equals

Theorem 4.3[12]- In a
X and all bases of X have the same cardinality.
Now wWe prove the following,
Theorem 4.4- £ G is @ connected graph, (G,8) is a matroid of
rank p-1, where P = IV(G)|
oid gollows fErom the fact that if

Proof:(G.,8)
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{Prq,xl,...,xn} comprise a cycle, p € Co({a,x,,...,x }) and

q € Co({p,xl,...,xn}).

Now, we have to prove that rank (G) = p-l. Let T be a
d let F = E(T). Then each pair of

spanning tree of G an

vertices in G is connected py a path in T. Now if e € E(G)

such that e & E(T) then there is a sequence el,...,enof
edges in F connecting the end vertices v, and v,. That is
{el'ez”"'e } comprise 2 " cycle. Hence E(G) = Co(F).
n
Hence, rank (G) < p-1.
|F| < p-l. Then

Now, let F C E, be such that

there are two vertices ¥V, and Vv, in ¢ such that it is not

prised by edges in F. If e

o'e

1'.0 k

connected by 2 path com

G which comprise a path joining v, and v

are those edges in 1 )
.18, C co(F) then py lemma 4.1 there is a

and if e -
F which comprise a vl-v2 path which is

sequence of edges 1D
0

a contradiction

sconnected, then (G,%) is a matroid of

Corollary: If C is di
Kk p-k where K is the number of components of G. 5
ran P-
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4.2 CONVEX INVARIANTS

The convex jnvariants (Definition 1.18) of (G,%)

d e(G) respectively.

will be denoted by h(G): c(G), r(G) an
Theorem 4.5. I1f G is @ connected graph of order p, the Helly
number of (G,$) is p~l:

¢ and F = E(T). We

Proof: Let T be 2 gpanning tree of

shall prove that F is H—independent.

) for every © ijn F. Then by the

es, €= 33351 €7 %3

lemma 4.1
for some e in F.

’

h that e = alan

in FN(e} su¢
Again using lemma 4.1,

e =
n-1" ®n-1°n
1. Co(F\(el}) also:

Then e € F and €
a;a) 21,2 3102%1,3" 1L,k

her sequence el,l‘
e and

,e .
‘“n-1

we get anot
gince el 1°°°

= a, a . This is contradiction,
llk n |
will then comprise two distinct paths joining

101,...'e1!k |
Hence: {Co(F-{a})/a e s} i

e
s empty and so

al and a of T.
n

h(g) > p-1.
F of cardinality at

F contains a subset,
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a cycle in G and

C =
{el,e2,...,ek}, comprising

e
i€ Co(F\ {e}) for each e in F and i=1,2,...,k. Hence
is not empty. Therefore, F is

N {Co(F\ {e})/e € F}
p-1l. o]

H-dependent and so h(G)<P- Thus, h(G)

Theorem 4.6. The caratheodory number of (G,8) is given by
1 if G is a tree
otherwise, where Circ(G) is the

c(6) = {cire(e)-1
circumference of G.

then every subset of E is convex

1f G is a tree.
t least two, we have,

Proof:
h cardinality 2

Hence, for each FC E wit

Fc, Q l;,(F-{e!}) =

Q co(F\ {e}). Hence, c(@) = 1.
e F

Co(F)
Now, let € P& @ longest cycle in G of length k and
= . Then
5= E(©) = {alaZ'azaB""'ak—lak' a2y
a for eacb i= lr2r-~-,k.

Let = - °
Si (S {aiai"'l})

£ e.& S;
Claim: aiai+l¢ CO(si\.{ei}) ;ﬂ;m; 411 we get
1), the le . get a sequence
If a;a;,1¢ CO(Si\{el
. e, . edges " OV
1'e2""’ek.0 i
4 cycle in G. This is not

1 »
se
e } comprl

{aia, ,el,..-r Kl
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possible bec - i
ause S {ei} consists of the edges of a path

only.
y. Hence, Co(si)c U Co(si\{ei}:eie Si} and so c(G) 2 k-1

of E of cardinality at

Now, let S be a subset

least k. Let e € Co(8)- If e€ S, eE€ S-{el} < CO(S\{el})

f 1 . *
or some e # e in S If e € S there is a segquence
e in 8 such that {e'el,l""'el,l} comprise a

e
1,17777771,4

cycle in G. Also, S # {e 40 } because of the

“’el’t

o 1
maximality of C- Let e € 5 - {el,l"°"el,l }. Then
1
e € Co(s \ {e'}) and S° cors) € U co(s\ (e7}/e €8) and
8]

c(G) £ k-1. Hence: c(G) = k-1.

Theorem 4.7. If g is a connected graph of order p, the

Radon number of (G.,%) is p-1-

gpanning tree and let F=E(T). Then

Proof. Let T be 2
and F, such that

into Fl

rtitioned
e Co(Fl)n Co(Fz). then

if F can be P2
and if e

Co(F,) N Co(F,) * ¢
there is 2 sequence of edges ell""'ell in Fl and
vt Sam " P, o that  eseyprctrfie 2
e,ezl'_..,ezlmcomprise cycles: Then ell""'elg and
e,yr % om are paths connecting the end vertices of e and
.. } contains a sequence
€18’ €,1’" ' 2m

h e
ence {ell'
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comprising a cycle, which is not possible. So F cannot have

a Radon partition. Hence, r(e¢) 2z p-1l.

Now, let F < E(G) be of cardinality greater than
p-1. Then it contains 2 subsequence {elr---:es} comprising
e € co(F\{e}) for i= 1,...,8.

Then for € b ei,

a cycle C.
) ¢ Co(F N\ {ei})-

Also e, e Co(E(C) N\ {ei} Now, let F=Fl U F2

be such that E(C) N {ei} c Fl and {ei} c F2' Then
€, € Co(F,) N co(F,) - yence, £(G) < p-1. Therefore, Radon
number r(G) = p-1. D
Theorem 4.8 For a connected graph g, the exchange number
is given by e(G) = 2 if G js a tree or a cycle
- max {Circ(G—v): v € V(G)}, otherwise.
Proof:
this caseé: every subset F of
case 1: Let ¢ be 2@ tree- In
¢ |IFI < 2 then let F = {el’e2}' Then
E(G) is conveX- I
hencé F is E—independent. 1f |F| 2 3,
F \ {el} ¢ F N {62}'
> 2. Then,
,en:P}l n =

letF.‘-‘{el""
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1
r
/
-
el
—t
I
-~
(U]
-
o]

Co(F \ {p})

cU{FN (e}

Hence, Co(F\{p} < U {CoF N\ {e}) : e* P, &€ F}.

Then either F=E oF F has no

Case II: Let G be 2 cycle.

subsequence comprising 2 cycle.

!
QUence co“‘pri Si ng a CYCIeI eaCh pr oper

contains no se
f is as in the case of a

£ F is conveX and so Pro°

subset o
the exchange number is 2.

Hence for poth the cases.

tree.
c r111: G is 2 graph naving a cycle <¢' and a vertex Vv
ase :
not in ‘C"
generality that ‘C' is the

out 1083 of

sume with
y and let v be a vertex not

- EVfOt‘i:l'z'_..
—.coan all ai 'n.

-a.-a
: and let
Let u be 3 vertex adjacent to Vv
a uv} Then it is clear that
Ia _1 n'
’ n
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Claim: a .
.21 % co(s N\ {aiai+l}) for any i=1,2,...,n. 1f
}) U {anal} contains a sequence comprising

not, (S
(s \ {2,254
Hence anale Co(s \ {aiai+1})

a cycle, which is not possible.

for any i. Hence S is E-independent and the exchange number

is at least the cardinality of s, which is equal to n.
Now, let S be 2 subset of cardinality atleast n+l,

e}, mZ n+l.

say 8 = e e
{ell

Let e € Co(S \ {ei}) gor some 1.

To prove that e € co(S N {ej}) for some J®i.

we get a sequence

e € Co(S N\ {ei}) py lemma 4.1,

Since
1 [ ]
ei,,__’ei in 8 \ {ei} such that e'el""'ek’ comprise a
cycle.
e}'{}' then S U {e}\ {ei} comprise a cYcle

1f s\ (e} = lepr
cts the maximality of C.

it contradi

of length m =
{ei} say fl,fz,...,ft

So, there is 2 subsed
f S } comprise 2 cycle. Let
Hence S is E-dependent d
co(S N (£})- an
f e s \F, then € =
=n. o
so e(G) < n+l., Thus e(G)=0
illustrated in Fig 4.2.

These theorems are
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e
1
6
f
€2
Fig. 4.2
In figure 4.2, circ(g) = 6, max { Cire(G-v): v
. € G}=5
Let F = .
- e._., ’ ’ ’
{e re,:®37% eg)

Then Co(F) = E(G).
/€ e ’eg}l

Co(F \ {e}) = {e,r©3:%47%5" 7" 8
Co(F \ {e2}) = {el,e3,e4,e5,e8,e9},
Co(F \ {33}) = {el,ez,e4,e5,e8},
Co(F N\ {e4}) = {81’62'e3’e5} and
Co(F N\ {es}) = {el,ez,eS,e4,e9}.
Also n{ co F \ {ei} | i:l,...,S} is empty.
So, F is an H-independent set. Actually, it is a maximal
nce.

H-independent set and he
h((c,8)) = 5= 61~ p-1-
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F is R-i
-independent, b
, because for any i
partition F
land F2 of F,

Co(F, ) - -
N Co(F.) = ¢. H i t
ence F is an R independent set and i
1 , i

Sor ((¢,8)) =5 =p-1.

is maximal.
e Co(F d
) and e & Co(F \ {e.})

F is Cc-i
C-independent because €.
for an :
y i=1 i
.2,3,4,5. Also F 15 maximal. Hence C((G,$))
L | ’ =5,
E-independent b
ecause e_ € Co(F \ (e
{ 1}) and
Here also F is

e«
Co(F N\ {ei}) for i=2,3,4,5.

7
maxi
Ximal . Hence C((G,8)) = 5.
Not

e 4.1. (a) In this example., we have h = c = r = e =5
(b) If the graph G is Hamiltonian, then

h=¢°*% r.

4,
3 PASCH-PEANO PROPERTIES
hall consider the Pasch Peano

In this section we S
ion 1.20). It is possible to express the

Properties (Definit
convexity space by

ties of 2 general

ex hull operator

P
asch Peano proper
tor by the conv

rval oper2

replacing the inte
Here W€ discuss the pasch Peano properties of

(G,8).
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Definition 4.3. A convexiéy space X has pPasch property if,
1 1 1l
e X such that a € co({a,t}), b e co({b,t}),

for a,b,t,al,b
b)) # ¢ and X has Peano property if

then Co({a,b'}) n co({a’

u € co({a,b}), V € Co({d,u}),

for a,b,d,u,v in X such that

there js a ‘w' in Co((b,d}) such that v € co({a,w)})-

we shall denote the edges of G by a,b,d,f and g.

Theorem 4.9. The convex structure (G,8) is a Pasch space if

x is not an induced graph of G.

and only if K, -

ljet u,v,v,t be such that uv = a,

Proof: 1f K4— X is a graph,
vt = £, v d, vw = 9 and wt = p are in E and ut & E (See
- ’ w = , =
Fig 4.3),
g
v
d
b
a
f
y t
" o
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Then d e Co({a,g})., £ € Cco({b,g}) and

Co({a,f}) N co({b,d}) = {a.£} {b,d} = ¢.

-x is not a subgraph. Let

Now assume that K,

ch that d € € co({a,g})., £ € Co({a.g}).

a,b,g,d,f € E be su

£ # b, 9 then a,b,d,f and g will be

1f d # a, 9°¢
as shown in the figure 2. since K, ~ x is not an induced
subgraph, ut € E and ut € co({a.£}) N co({b,d}). If d=a (or
£}) # ¢. Now if d=g,

(b,d1) N co({a,

if f=b), clearly co(
co({b.d})

and hence co({a,£}) N

-
-

then £ € Co({b,g})
(G,%) ijs Pasch if and

Co({b,d}) # &-

- x is not 2

n induced subgraph of G. q

onl i
y if K4

ture (G,S) is a Peano space if

Theorem 4.10-
- x as a subgraph.

and only if G does

. x as a subgraph. Then G contains

containl Ky

.o the graph 17 figure 4.4 -

Proof: Let ©

a subgraph isomorPhlc



108

Fig-. 4.4
at e € co({a,b}): ¢ e cCo({e,d}).

In G' albleldl
* in Co({b,d}) ={b,d}

But it is not pOSSible to find 23 ‘g
such that f € Co({a,g})-
Now jet © be graph which contain no subgraph
i ,d,e,f pe as 1in the P
isomorphic to Kq % pet a:P eano
condition.
= b, then the proof i
b}) 1£ e=a °F is
Let e € co({a-
trivial S assume e a or b. 1f Co({e,d}) - {e,d}, then
ivial. o
f d d belong to CO({alb}) or co({ald}). 1f
= e oOr an
s an £ - e,d in Co({e,d})_ Then f
Co((e,d}) * (e,d}: ghere
£} comprise a K, -
N and So {a’bldlel 4 x
is adjacent t° e and d
sible Hence the theorem.
o8 ‘

which is not P
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Not
e 4.2. It can be easily observed that for matroids Peano

ies the pasch property. In particular, (c,8)

Property impl
t is @a pasch space. The

ce implies that i

1s a Peano spa
is a pasch space which is not

co .
nverse is not true.
o

2 Peano space,



