
SOME PROPERTIES OF H-CONVEXITY ON R
n

In this chapter, we consider some problems posed

by van de Vel [12] on the H-convexity of r". This
convexity on vectorspaces generated by linear functionals

has been studied by Boltyanskii [19] and Bourguin [20] and

has so^e interesting properties. In general, a
.  • .llv generated H-convexity need not be JHC or S^.symmetrically

Toi-ina a Problem of Van de Vel ([12]
In the process of answering

^^r.ent private communication), as to whether
and also on a receni.

A^^ is of arity two, we obtain a
™»frlc H-convexity is oreach symmetric

a  symmetrically generated
sufficient condition for

.  =Kitv two and give an example toH-convexity to be of arity
U  .ritv could be infinite. A necessary

illustrate that the
f K the symmetrically generated

and sufficient condition
and an example of a PP space which is

H-convexity to be
nnt- of arity two are also^  S and hence not

neither JHC nor

obtained.

H-CONVEXITY

vectorspace over a totally ordered
bet V be a
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,  . ̂ he a collection of linear functionalsfield K and let ̂  be a coii

« ™ilv y = {f"^(-<n'n] = a e k, f € 5^}
from V K. Then the family

.. KonV, coarser than the standard
generates a convexi y

.1. Tf -f € whenever f e
1 1^j an H-convexity.

one. It IS called
H-convexity. We usually omit

then 8 is called a symme
^  y symmetrically generate the

one of f, -f 3nd s y . r" is an H-convexity
., « The usual convexity xn Rconvexity ^ functionals from

1ection ox ai^
generated by the o

R^--♦ R.

Fig.5.1

Figure 5.1
i veS typiIcal polytoP®

of generated by the
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f  oroiections and their sum in which {a,b,c} is aco-ordinate projecix

fh=.t the standard convex hull of4- nh«!erve that rnespanning set. oose
.. a b and c and is

.V, frlangle with vertices a,b,{a,b,c} is the triangie

contained in this polytope.

, V b. l-o » lunptlonLet X and Y ^ . n
4:iinr'tion (CP function)

.  a convexity preserving functionr . Y t. Y IS a cou V

*  j-l(C) is convex. R function
if fnr each convex set C c ,if for eac ^ if for each convex set

rr C function ) n
i-r. convex ^

f is convex to

r / r* ̂  is convex •C c X, f(C)

.  „ith usual convexity and Y is r" with
„ the identity mapping from X Y is a CPH-convexity then

,,...,1 H-convexity need not be
.  .,11 V generateo

^ symmetric

JHC or S^.

Example [12]-
„4tv symmetrically generated

.  ̂ t>oLet sum, defined on

"" , , ,
3  j . [(j.tj. 3' '

an

funct ion•
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u = (1/2,1/4,1/4), V . (l/2.»,l/»-

Fig
5.2

„1 e Co{a,c} such that
not exist a v

Then there does ^ exists, then
1,^ If such a ̂

V € Co({b/V )/•

. f (v^) = °1, < 0, hence ti^
0 < f.(V ) - 1. . 0

1  < 1/4 hence ^2tAy ) 5 0-^' (/) < 1/2
'  1, < 1/2, hence
1/4 < ) "

(v^) -
and therefcte 4 exists 'v^' 1

ge there can not exists
1  ̂4^^^ ' 1But f^Cv) - ' co({b.v })•

such that V
Co ({a,c}) ®
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be

s  not

t satisfy the Peano property and hence isThat is, K does not satis

not JHC.

„ \. * < 0, y - 0)
Example 5.2 Let Cj^

X. z < -1, x+y+z ̂  0}-
c  = {(x,y'Z)• ® "

^  . .„t convex sets which cannot
« Hisioint coil

Then C_ and C is1  2 That is, the H-conveKity
separated by half spa r-ioi

,  , r.r ..oth.rin general S^. following theorems.
„ , ri2] we have the

From Van de Vel L

.  c p " " '"*
a sur^ective

Theorem: 5.1

following are true
A r(X) ̂  r(*'

(1) (if h(X) ̂  h(Y) j,(X) ̂  c(Y)
C C then C(X)

(2) If f is

,re eUvalsnt
7  The toiTheorem 5.-^'

structure Then X is
, < 3 and li * '3

(1) If h(X) - then X IS S^.
.  ̂ o and i

(2) If h(X) -
««,4nnal vector space

.  dimensional
. ̂ a fiJ^^t®

.3. " . ,d K, and let C be the
A  fieldorderedem 5

the totally
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„  symmetrically by a set ^ of
H-convexity on V gen

• X ni- if K = R' then,.  If y is finite or if R
linear functionals. ^ ^ „

= SUP{| 0

minimaly dependen i

ihe following'
We also have the

w  of r'*. Then H is a„ is a subset of ksuppose H IS
Theorem 5.4 [8J' i ts a non identically

iv if there exis. f. and only . 1 i.hyperplane if constant <5 such that
f and a refunctionals ^

zero linear funct
n, f(x) ' *

H = f'^(<5) = I* ̂  ̂  ■ following observations
,  ao theorems/

prom thes

can be made. „_convexity on R is at most n+1
„  number of any H c1) The Helly ^ .g

' /-< H-convex ^
2) Any synunetff- « ^ functionals corresponding

tion

3) If ̂  is « r3 whose intersection is a
a  family of Helly number of the

^1^4, i**®"

.,.a " *■
11V general®symmetrically

, , , PHOBtSM OP P»" "■ . probl.m ol
thl.
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A ohtain some interesting results of theVan de Vel [12] and obtain so ^
H-convexity of R •

symmetrically gerier

H-convexity of arity 2 ?
PROBLEM: Is each symm

, the above problem and give an exampleMe studied the a

vexity of infinite arity. We get a
of a symmetric H-con

under which a tamiiysufficient condition „.^e„vexity of arity 2.

ector space R^ over R and let beconsider the vector ^
„£ linear functionals over . ^

any collections ^ ^ ̂
H-convexity generated by

Co{x^-*2^ - I'
X. f all convex combinations

,e mean the set of
By [£(x^),f(«2^^
of £(Xi) 3

each functional on R
„y theorem 5.

_3 MOW we prove,

a  ■corresponds
•i« of linear functionals

a  family or

Theorem 5.5- ^ intersecting in a line,
.  „ to a familycorresponding
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. .he H-convexity synonetrically generated by
then the arity of the H

is two.

p„.,: L.t C c h' h.v. th. P"P.«, th-t CPlh-xp
^ fhat C is convex. Let F c C- P To prove tha

whenever X- /X,. ^

^Co(F). betted. Then,where |f| > 2 and let y ̂  Co( )
€ F such that

Claim: There are Xj^/ j

«(Xj) i '!'> - ""p''

Otherwise, i ^-1 jj(y) «,) will be
(  -00, rvy^J

each X in F, then, intersecting with F. So
containing ^

a half pace co"

fhe claim*y«Co(F). Hence th
-1 (£(y)) meets the standard

ch ^ ̂  ̂ 'Therefore, ® f"^(f(y)) tot each f € y,
^ p since, Y ̂

convex hull o h«raWie corresponds to the

n {f' (f(y)^= ecting in « straight line, the set
family of plan®® ^ ^ ^

• g a gtraly**
P, {£'^(f(y):^ ^ i:-l-(f(y)) and g'^{g(y)) 1® the

_le between
that the ang

(see ti9
maximum
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g^(g(y))

Fig. 5.3

.  _ ^ (g(y)) n ̂  ^
Let . f-' n ^ ̂  ^ ^ ,
the standard convex convex. Hence the
, ,P) . C and therefore C

Hence Co(F; . A by S' is ot arity 2. ^
H-convexity generated

.« not true for a family of
t^jj0oirC^

The above

1, corresponding tofunctionais followi*^9 example gives an

,, a singleton. Theintersection i'- H-convexity of infinite

exampl®

arity

linear functionais corresponding to
Let F l*® pposs section is a

of a eone.
the tangent pl®"®^ That is, f ^ ^

the

lle^ ^ constant angle with the
theresponds to the

circle pat®

cor
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4-v»af fhis angle is 7t/4. That is,x-y plane. Let us assume that this ang
o rt -X sin 01 - z, 01 € [0,2n)}y = {f: f(x,y,z) = y cos O. x sin

C: {-\,o,o)

'« (o.o,'l)

Fig
5.4

. ch 1, IW """ """
Now the solid C w i

is a convex set.

Let C, = C\{y'y . r. is convex with respect
^co(C,)- ^

It is clear that y - 1
/lard convexity-

'» ^ # ,.r ..=■> ' •
.  x-1 (£(y)) n ^1 . ^Ph.i 1. f .J , , . (,(,» n =1 •

^ . f '■ £(y) n ^3ut note tha . , we get x, e C
to each £, "« « £ i

lence correspon m ^ in£inite
. ̂ whenever 9-

Such that x^ g
.jnfinit®*

flp, 1 is 1"^fx.: f e r } ^
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fh. property that Co(F) c C for eachHence C is with the propem i

.  j ̂r. c but C, is not convex. Hence the
finite set contained j 1

. H by is of "convexity generated

is of uncountable arity.

fhe above H-convexity is of arity
u c 1 a) Since the anovRemark 5.1. ®/*

greater than 2, it is

if we replace the cone whoseb). For any n, ^ pyramid whose crossection is
cross section is a oi ^.^onvexity symmetrically
a  regular f„„ctionals corresponding to the

u  f"he family ®genetated by lateral faces, is of

„t planes containing the
family of tangent P

arity n.

H-convexity generated by the
„3 „ith the H

Remark 5.2. to the tangent planes of
.  3is corresponding

family of function property. For, let
f *. have tn®

a cone, doesn ^ [0,2n)).
.  _ y cos

5^ = {f: (1/2,0 ,1/2) and
,  h = (0,0,1)' o

,  » - (-1,0,0)'
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m, ^ it Also note that v e Co({c,u})
Then u e Co({a,b}). Also

(See fig 5.5) (1/2, 0,1/2)

C:

(1/2,0,0)

(1/2,1/4,1/4)

(1/2,-1/4,1/4)

i, the solid in fig 5.2, because any
Note that Co({c,u

plane P making solid C will be contained

t.. " , _ . ,
„f th. M"

in one or

Fig 5.6
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3  ff, V z) = Then f e
Define f:on R 3® fCX/Y'

^  • a half plane containing both a and c.Then f(x,y,z) < 0 is a halt p

Sul lor » . (1/2,1/4.I/O- ' "•

Hence v fS Co({a/C})'

-  be the ordinary segmentNote that Co({b,e}) -
It is the intersection of the soli

joining b and c, because
,  = 0, and the convex se

C, the plane x+z

CQ= {(x,y,z) - "

c in Co{b,c},.
NOW for any V ^

™.ben X > 1/2 and Zq < 1/ '1  y ). Then Kq
Let V = (*o'^0' ®

V

In this case, Yq o
- y + z. Here g €

3  K such that g(K'y'^> ^
Define g! R . , 1/2 contain both v and a

£(x,y'«) ̂
Then, the half spao

but V 0 H.

_ rofla-v })•
Hence v i

fj^convexity
Remark 5.3. T®

s  For, th® convex sets which can
^  - ol are con.

- 1, * '
{(x,y,z)= "

not be

separated
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characterization for Cgi H-convexity
Now we give a characteriz

3
in R to be S .

4

vOv symmetrically generated by a
Theorem 5.6; The H-convexity

.  ̂ is S, if and only if for any
family of linear functiona

straight lines, the plane determined
two inte rsecting convex straig

That is, ̂  should contain the
by these lines is convex.

CO the plane determined by these
functionals corresponding

lines.

,  be any two intersecting convex lines.
Proof: Let and j parallel to

arated from a line
Then, i can be sep ^ plane

not intersect with^2 and which does

containing ^2
-,itv on with the given

♦-helof be th® "NOW let disjoint convex sets. Since
.  and <^2

condition and le i spaces, there are half
j hv hall f^etermine<3 oy

and

such that,

and
^1'

2

n "2 ^ "
K n 1^0 n ' ' _ n N""" ^
i  , . . n *^1 ^ "

C2 = n "2 ^
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is at most four, the
Now, since the Helly number

four membered subfamily of the above
intersection of some

o< h.» «.=•• »

It "i n ''i,! ^
^ H and is the required

Then H. n S = ^

half space.

_  p p and P» be the
„  = 4, ,let Pi'Pj'^k' ^

If H. n "jO '^k ^ ̂

corresponding pl®"^

,  . , . p. n Pj and
Let ^, . i ^

1 / J ^

^ u« t and the line I whichdetermined ny
Let Pq be the plan® parallel to Then P^
intersect with , j □

4.^a C ^2*separates

lo aives an H-convexity on

NOW t properties but is

which satis

neither JHC nor S^-
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L.l^= (1.

a,b € R}• ,
nv«xity synmetrioally generated

Then we observe that the H-co

by d' has the following propert
is convex.

•  line iri
Pach straxght ii»Property 1. E . » Une is contained in two

that any straight ImeFor this we prove ^ perpendicular to the x-y
distinct convex planes there are infinite

■iallY tx"ne. ^
plane, it is triv

lanes by the choice
number of convex P „hich

perpendicula"^
there is a plane generality that t passeswithout loss or
contains ^ ^ {(0,0,0)}.

Then £0-^ '
through (0,0, •

,  ̂ piene perpendicular to the x-y plane
y = 0 IS ^

Then ' *1

d containing
by the choice of ^ we get an othen, oy

I, ■
■h that, the P"" ' , - 0, wUl contain t-

_ X sin « ^ '
, 9 (y
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•  loss of generality that
»o. i.t 0 S « i on-

1. x-Y plane which contain t is
the plane perpendicular o

the x-z plane.

Let (h,0,h+k) € i. ^ ̂  "■
... . . -n. ,

_ 2 = 0 is a convex p
y cos o( - X sin c(

V, straight line is con'®*"Hence each stra y

a Pasch- Peano space.«  This is aProperty 2. ^ „ e c u we get a v on
•  1, 11 € a o /such that, "For any a,b,c,u,v ^ because the convex hull of

.  ̂ ^ di ^ ' Thib c such that segment joining those points.
the ordinary

any two points i ..ooerty. Using similar
the pea*'® ^

so this is having property.
r-an prove thatarguments we can p because any line on the x-y
..her JHc nor S^.

But this is neitn convex. Therefore by
but the pUn®

e is convex n ^ arity two.^ , 2 this convexity
1  1 and 1•heorems t •

,„p SOOOESTIOHS FOR FURTHER STUDY.
TWO remarks AHD n3 COHCLUDIMG

attempt to find out some
thesisThis graphs, interval

graphs/
^ C . S . ^

pi ane

theorems

ofiroperti®®
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.  totally non-interval monotone graphs,
monotone graphs and

.  _ new type of convexity to the edge
We have also introduced

.  .„d it. oonv.. •»<'set of graphs and

ivsed. properties oproperties are analy

H-convexi ty.

u. thesis are far from being
Th, r..ul"

, lb. Pi.bl.." ""d" "• •"""
list some of the vcomplete. We difficult.

. d or found the answersnot attempted

.  , solvable trees.
1. Characteris smallest d.c.s. graph

2^26 O I-
2. Determine t e P-uivalently is it possible

olvable tree.
containing a nonso t d c s. graph containing

j-e of the smallest
to express the siz diameter, radius and

.  „ of the order,
a functionany tree as

the degree?- .4 is it possible to
nary of Theorem 2.

3. In the coron . r of sufficiently large
hv any m.c-s-r.pl.c. K„,„ M ,(.,b, - V«,) f.r P.n
Hie propertythe y

e  with

€ V(G)?

Cha

ce free graphs.
cterize halfsP''®iractet -*■
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5. Characterize JHC graphs.

vv, study of edge convexity has been just6. Since the stuay

.rties of convexity in V(G) studied in detailinitiated, propert

h. attempted in this case also.
by many authors can

•  . the H-convexity of arity two.7. Characterize the
t- i = 2,3 and 4.

•  s graphs for
8. Characterize


