THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2011

(C.C.S.S.)

Statistics-Complementary ST 3C 03_STATISTICAL INFERENCE
(2009 admissions)

Time : Three Hours

Part A
Answer - 11 questions.
Each question $\quad 1 / 4$ weightage.

1. The moment generating function of the Chi-square distribution with n.d.f. is :
(a) $(1-2 t)^{n /-}$.
(c) $(\mathbf{1}-2 t)^{\mathrm{n} /{ }^{-}}$.
(d) None of these.
2. The relation between student's t -distribution and F -distribution is :
(a) $F 1,1=t^{2}$.
(b) $\mathbf{F n}, \mathbf{i}=t f$.
(c) $\mathrm{F} 1,1=\mathrm{tf}^{\circ}$.
(d) None of the above.
3. The S.D. of the sampling distribution of a statistic is known as :
(a) Sampling error.
(b) Standard error.
(c) Means square error.
(d) None of these.
4. Critical region is a region of
(a) Rejection.
(b) Acceptance.
(c) Indecision.
5. By the method of moments one can estimate
(a) All parameters of a population.
(b) Only mean and variance of a distribution.
(c) All moments of a population distribution.
6. If t_{1} and t_{2} are two estimators such that $\operatorname{Var}\left(t_{1}\right)<\operatorname{Var}\left(t_{2}\right)$ then
(a) t_{1} and t_{2} equally efficient.
(b) t_{1} is more efficient than t_{2}.
(c) t_{2} is more efficient than t_{1}.
(d) None of these.
7. The probability of type II error is •
(a) Power.
(b) 1-power.
(c) Size.
(d) None of these.

Let $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a normal population with mean μ and variance σ^{\sim} and then the distribution of ${ }_{2}{ }_{2}$ follows Chi-square with $\mathrm{n}-1$ degrees of freedom if :
(a) $S^{2}={ }_{n-1} \Gamma_{i=-1}$ X
(b) $s^{2} \quad \sum_{i=z}^{\prime \prime}\left(\mathrm{X}_{i}\right.$
(c) $\mathbf{S} \mathbf{2}=\frac{2}{\mathrm{n}} \sum_{i=}^{\gamma}$
(d) None of these.
9. Which of the following statement is true ?
(a) MLE is unbiased.
(b) MLE is consistent.
(c) MLE is unique.
(d) None of these.
10. Level of significance is the probability of :
(a) Type I error.
(b) Type 11 error.
(c) Not committing error.
11. Testing $\mathrm{H}_{\mathrm{o}}: \mu=10$ Vs. $\mathrm{H}_{1}: \mu=10$ leads to:
(a) One-sided upper tailed test.
(b) One-sided lower tailed test.
(c) Two-tailed test.
12. Distribution of the test statistic used to test $H_{u} \quad \sigma^{\wedge}=\sigma_{0}^{2}$, where a^{2} is the variance of a normal population with unknown mean :
(a) Chi-square distribution with n 1 degrees of freedom.
(b) Chi-square distribution with n degrees of freedom.
(c) t distribution with $\mathrm{n}-1$ degrees of freedom.
(d) t distribution with n degrees of freedom.
(12 $\times 1 / 4=3$ weightage)

> Part B
> Answer all nine questions. Each question carries 1 weightage.
13. What are the uses of Chi-square distribution?
14. What do you mean by sampling distribution?
15. Define an unbiased estimator ?
16. What do you mean by confidence interval ?
17. What are the desirable properties of a good estimate?
18. Define most powerful critical region.
19. State Fisher Neyman factorization criterion.
20. Write down the application of Neyman Pearson Lemma.
21. Distinguish between Type I and Type II errors.

Part C
 Answer any five questions. Each question carries 2 weightage.

22. State the relation between the normal \mathbf{x}^{2}, t and \mathbf{F} distribution.
23. Let $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a normal population with mean μ and variance a^{2} Obtain a sufficient statistic for a a when μ is unknown.
24. Obtain a 95% confidence limits for the mean μ of a normal population $\mathbf{N}\left(\mu, a^{2}\right)$ when a is unknown.
25. Give an example of a MLE which is consistent but not unbiased.
26. Distinguish between Simple and Composite hypotheses? Give examples.
27. Obtain the moment estimator for 0 in the population with density given by

$$
f(x, \theta)=\frac{1}{\omega} e^{\theta} \quad x \geq 0 \quad O>0
$$

28. Explain the test procedure to test the hypothesis that $\mathbf{H}_{\mathbf{o}} \quad \mathbf{a}^{2}=\sigma_{0}^{2}$ against the alternative $H_{1}: a^{2}>\sigma_{0}^{2}$, where a is the variance of a normal population with unknown mean.
($5 \times 2=10$ weightage)

Part D

Answer any two questions. Each question carries 4 weightage.

29. State and prove additive property of Chi-square distribution.
30. Let $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a population with density

$$
f(x, \mathbf{f 3})-\operatorname{e}_{\boldsymbol{I}(\alpha)}^{-\beta x} x^{\alpha-1} \mathrm{~B}, \quad \mathbf{0}<\mathbf{x}<\mathrm{c} 0
$$

Find the mole of when a is known. Also find the variance of the mle.
31. Explain the test procedure to test the equality of means of two normal populations with unknown but equal variances.

