THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2012

(CCSS)

Statistics

ST 3C 03—STATISTICAL INFERENCE

Time : Three Hours

Answer all twelve questions.

1. If $\begin{pmatrix} x_1, \\ y_2 \end{pmatrix}$ is a r.s. from N $6^2 \end{pmatrix}$ and if $S^2 = -\frac{n}{n}$, then the statistic $\frac{nS}{-2}$ is _____ (a) \mathbf{x}^2 -with n d.f. (b) x^2 -with n-1 d.f. (d) t with n-1 d.f. (c) t with n x_{i} is a r.s. from N and if s = then V (S²) _____ 2. If **(b)** $\frac{2(n-1)}{2}$ (a 2(n --(d) 2σ. (c) If a statistic t is unbiased for a parameter 0, then, which of the following is always true ? (b) t^2 is not unbiased for 0^2 . (a) t^2 is unbiased for 0^2

(c) \mathbf{t}^2 may or may not be unbiased for 0^2 (d) None.

4. Which of the following can be considered as sufficient conditions for consistency

- (a) $\mathbf{E}(t_n) \to 0, \, \mathbf{V}(t_n) = 0 \text{ as } n = \infty$. (b) $\mathbf{E}(t_n) \to 0, \, \mathbf{V}(t_n) \to 1 \text{ as } n \to 00$. (c) $\mathbf{E}(t_n) \to 0, \, \mathbf{V}(t_n) \to \mathbf{0} \text{ as } n \to \infty$. (d) $\mathbf{E}(t_n \to 0, \, \mathbf{V}(t_n) \to 1 \text{ as } n \to \infty$.
- 5. The mean and variance of a **r.s.** of size 100 are 50 and 400 respectively. Then a 95% confidence interval for the population mean is ______
 - (a) [46.53, 53.47]. (b) [46.43, 53.47].
 -) [46,25, 53.75]. (d) [46.08, 53.92].

Turn over

Maximum : 30 Weightage

- Let (x₁, x₂, x_μ) be a r.s. of size 10 drawn from N(μ, σ Then a 100(1— a)% confidence interval for μ (when σ is unknown) can be constructed using _____ distribution.
 - (a) Normal. (b) Chi-square.
 - (c) t. (d) F.
- A 95% confidence interval for the variance of a normal population on a r.s. of size 'n' is given by ______
 - (a $\frac{nS}{\chi^2_{0.025}} \left(\frac{nS}{\eta} \frac{nS}{\chi^2_{0.975}} \right)$ (b) $\begin{bmatrix} nS & nS \\ \chi^2_{0.025} (n-1) & \overline{\chi^2_{0.975}} \right)$ (c) $\begin{bmatrix} \overline{x} \pm r_{0.025} & S \\ \sqrt{n} \end{bmatrix}$ (d) None.
- 8. A 99% confidence interval for the population proportion based on a large sample proportion *p* is given by _____
 - (a) $p \pm 2.56 \sqrt{na}$. (b) $p \pm 1.96 \sqrt{\frac{pq}{n}}$ (c) $p \pm 2.56 \sqrt{\frac{pq}{n-1}}$ (d) None. The probability of type I error is (a) **a**. (b) **1 a**.

10. The most powerful test consists in minimising _____ or maximising _____ for a fixed _____

- (a) a, 13, 1 P (b) a, 1 a, 13.
- (c) 1 1 , a. (d) 13,1 3, a.

11. For testing H_0 2 against the B.C.R. is given by,

9.

H₁ ·
$$> G_0^2$$
,
(a) $\frac{nS^2}{2}$, (a).
(b) $\frac{nS^2}{0^2}$ 2_n (a).
(c) $\frac{nS^2}{6_0} - \chi^2_{n-1}$ (a).
 $nS = 2_n$ (a).

12. The test statistic for testing the equality of variances of two normal populations based on random samples (x₁, x₂, ...,) and (y₁, y₂, ..., y_n) is ______

(12 x = 3 weightage)

II. Short answer type questions. Answer all nine questions :

- 13. Define the Chi-square statistic for testing $H_0 \circ^2 \sigma_0^2$ based on a r.s. (x1, 2, x_n) drawn from $N(\mu, \sigma)$ Also, write down the p.d.f. of the statistic.
- 14. Define an F-variate and write down the p.d.f.
- 15. Define : 'Consistency' and give a set of sufficient conditions for consistency.
- 16. Define : (a) Most efficient estimator and (b) Efficiency.-
- 17. Write down the 100 (1 a)% confidence interval for (a) Population proportion and (b) Difference of the means of two normal populations having equal and known variance.
- 18. Define : (a) Level of significance. and (b) Power of a test.
- 19. Define : (a) Null hypothesis and (b) Alternative hypothesis.
- 20. State Neyman-Pearson Fundamental lemma in testing of hypothesis.
- 21. Write down : (a) The null hypothesis.
 - (b) Test statistic.
 - (c) Probability distribution of the test statistic,

associated with the "paired t-test for difference of means". Also, specify the two tailed critical region.

 $(9 \times 1 = 9 \text{ weightage})$

- III. Short Essay or Paragraph Questions. Answer any five questions
 - 22. Explain the method of maximum likelihood estimation.

23. Obtain the moment estimator of the parameter 0 of the exponential distribution, ²⁰

 $f(x, 0) \qquad \begin{array}{c} \theta e & 0 < x < 0 \\ 0 & \text{, elsewhere} \end{array}$

24. Let (20, 22, 21, 24, 21) be a **r.s.** drawn from N **, 6**⁻ Obtain a 95% confidence interva for **,**

 $H_0 0 = 1$ against

25. If x 0.5 is the C.R. for testing H, = 2, by means of a single observation from a population,

 $f(x, \theta) = \frac{1}{\theta}, 0 \le x \le$ obtain the sizes of type I and type II errors.

- 26. Let $(x_1, x_2, ..., x_9)$ be a **r.s** of size 9 from N(0, 25). If, for testing $H_0 = 20$, against $H_1 : 0 = 26$, the **C.R.** is denoted by $W = \{x > 23.266\}$, find the size of the **C.R**.
- 27. Show that t-distribution tends to normal distribution under certain conditions.
- 28. Show that, for an F-distribution with (m, n) d.f., the r raw moment is

$$r = \frac{\binom{n}{2} + r \frac{n}{2} - r}{\binom{m}{2} n}$$

IV. Essay type questions. Answer any two questions.

29. (a) Show that if F has an F-distribution with $(_{3} n_{2})$ d.f., — has an F-distribution with

 (n_{i}, n_{i}) di

- (b) Also, explain the relation between *t* and F distributions.
- 30. (a) Find the moment estimator and m.l.e. for the parameter 0 if the distribution, $f(x 0) = (0 \pm 1)$, $0 \propto 1$.
 - (b) If a r.s. of size 8 from this population produces the data :

0.2, 0.4, 0.8, 0.5, 0.7, 0.9. 0.8, 0.9,.

find that values of moment estimator and m.l.e. of 0.

31. Explain (i) the large sample test for the equality of population proportions ; and (ii) chi-square test for the independence of two attributes.

 $(2 \times 4 = 8 \text{ weightage})$

 $(5 \ge 2 = 10 \text{ weightage})$

1(