# THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2012 (CCSS) <br> Statistics <br> <br> ST 3C 03-STATISTICAL INFERENCE 

 <br> <br> ST 3C 03-STATISTICAL INFERENCE}

Time : Three Hours
Maximum : 30 Weightage
Answer all twelve questions.

1. If $\left(x_{1,} \quad{ }_{n}\right)$ is a r.s. from $\left.N \quad \sigma^{2}\right)$ and if $S^{2}=\frac{n}{n}$, then the statistic ${ }_{2}^{n S}$ is
(a) $\mathbf{x}^{2}$-with n d.f.
(b) $\mathrm{x}^{2}$-with $\mathrm{n}-1$ d.f.
(c) $t$ with n
(d) $t$ with n-1 d.f.
2. If

$$
\left.x_{n}\right) \text { is a r.s. from } \mathrm{N}
$$

and if $\mathrm{s}-\underline{\left(x_{i} \quad \text { then } \mathrm{V}\left(\mathrm{S}^{2}\right)\right.}$
(b) $\frac{2(\mathrm{n}-1)}{n}$
(c) 2 (n --
n
(d) $2 \sigma$.

If a statistic $t$ is unbiased for a parameter 0 , then, which of the following is always true ?
(a) $\mathbf{t}^{2}$ is unbiased for $0^{2}$
(b) $\mathbf{t}^{2}$ is not unbiased for $0^{2}$.
(c) $\mathbf{t}^{2}$ may or may not be unbiased for $0^{2}$
(d) None.
4. Which of the following can be considered as sufficient conditions for consistency
(a) $\mathrm{E}\left(t_{\mathrm{a}}\right) \rightarrow 0, \mathrm{~V}\left(t_{n}\right) \quad 0$ as $n \quad$ co.
(b) $\mathrm{E}\left(t_{\mathrm{n}}\right) \rightarrow 0, \mathrm{~V}\left(t_{n}\right) \rightarrow 1$ as $\mathrm{n} \rightarrow 00$.
(c) $\mathbf{E}\left(t_{\mathrm{n}}\right) \rightarrow 0, \mathrm{~V}\left(t_{n}\right) \rightarrow \mathbf{0}$ as $n \rightarrow \infty$.
(d) $\mathbf{E}\left(t_{n} \rightarrow 0, \mathrm{~V}\left(t_{n}\right) \rightarrow 1\right.$ as $n \rightarrow \infty$.
5. The mean and variance of a r.s. of size 100 are 50 and 400 respectively. Then a $95 \%$ confidence interval for the population mean is $\qquad$
(a) $[46.53,53.47]$.
(b) $[46.43,53.47]$.
) $[46,25,53.75]$.
(d) $[46.08,53.92]$.
6. Let $\left(x_{1}, x_{2}, \quad x_{n}\right)$ be a r.s. of size 10 drawn from $N(\mu, \sigma \quad$ Then a $100(1-\mathrm{a}) \%$ confidence interval for $\mu$ (when $\sigma$ is unknown) can be constructed using $\qquad$ distribution.
(a) Normal.
(b) Chi-square.
(c) $t$.
(d) F .
7. A $\mathbf{9 5 \%}$ confidence interval for the variance of a normal population on a r.s. of size ' $n$ ' is given by $\qquad$
(a $\quad \begin{array}{cc}n \mathrm{~S} & n \mathrm{~S} \\ & \chi_{0.025\left(^{\prime \prime}\right)}^{2} \\ \chi_{0.975(n)}^{2}\end{array}$.
(b) $\left[\begin{array}{c}n \mathrm{~S} \\ \chi_{\mathrm{v}, \mathbf{0} \mathrm{L}}^{2}(n-1)\end{array}\right.$

(c) $\left[\bar{x} \pm{ }_{0.025} \frac{\mathrm{~S}}{\sqrt{n}}\right]$.
(d) None.
8. A $\mathbf{9 9 \%} \%$ confidence interval for the population proportion based on a large sample proportion $p$ is given by $\qquad$
(a) $p \pm 2.56 \sqrt{n a}$.
(b) $p \pm 1.96 \sqrt{\frac{p q}{n}}$
(c) $\quad p \pm 2.56 \sqrt{\frac{p q-}{n}-1}$
(d) None.
9. The probability of type I error is
(a) $\mathrm{a}_{\text {. }}$
(b) 1 a.
10. The most powerful test consists in minimising _____ or maximising $\qquad$ for $a$ fixed $\qquad$
(a) a, 13, 1 - $\mathbf{P}$
(b) a,1-a,13.
(c) ${ }^{1}-\quad^{3}, a$.
(d) $13,1-3$, a.
11. For testing $H_{o} \quad o^{2}$ against the B.C.R. is given by,

$$
\mathrm{H}_{1} \cdot>\sigma_{0}{ }^{2},
$$

(a) $\begin{gathered}n \mathrm{~S}^{-} \\ 2\end{gathered} \quad n(\alpha)$.
(b) $\begin{aligned} & n \mathrm{~S}^{-} \\ & \mathrm{O}^{2}\end{aligned} \quad 2_{\mathrm{n}}(\mathrm{a})$.
(c) $\frac{n \mathrm{~S}^{-}}{6_{0}}-\chi_{n-1}^{2}$ (a).
$n \mathrm{~S}$
( $\alpha$.
12. The test statistic for testing the equality of variances of two normal populations based on random samples $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots.\right)$ ) and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is $\qquad$

(b)


$$
\left.\mathrm{S}_{1}\right|_{m} ^{1}+\frac{1}{n}
$$

$\Sigma\left(x_{\mathrm{i}}\right.$
(c) ${ }^{1} \mathrm{E}\left(\mathrm{Y},-{ }^{1}\right)^{2} \quad-1$
(d) None.
(12 $x=3$ weightage)
II. Short answer type questions. Answer all nine questions :
13. Define the Chi-square statistic for testing $\mathrm{H}_{0} \mathrm{O}^{2} \quad \sigma_{0}{ }^{2}$ based on a r.s. (x1, 2, $x_{n}$ ) drawn from $\mathbf{N}(\mu, \sigma)$ Also, write down the p.d.f. of the statistic.
14. Define an F-variate and write down the p.d.f.
15. Define : 'Consistency' and give a set of sufficient conditions for consistency.
16. Define : (a) Most efficient estimator and (b) Efficiency.-
17. Write down the $100(1-a) \%$ confidence interval for (a) Population proportion and (b) Difference of the means of two normal populations having equal and known variance.
18. Define : (a) Level of significance. and (b) Power of a test.
19. Define : (a) Null hypothesis and (b) Alternative hypothesis.
20. State Neyman-Pearson Fundamental lemma in testing of hypothesis.
21. Write down : (a) The null hypothesis.
(b) Test statistic.
(c) Probability distribution of the test statistic,
associated with the "paired $t$-test for difference of means". Also, specify the two tailed critical region.
( $9 \times 1=9$ weightage)
III. Short Essay or Paragraph Questions. Answer any five questions
22. Explain the method of maximum likelihood estimation.
23. Obtain the moment estimator of the parameter 0 of the exponential distribution,

$$
\begin{array}{ccc}
f(x, 0) & \theta e & 0<\mathrm{x}<\mathrm{oo} \\
0 & , \text { elsewhere }
\end{array}
$$

24. Let $(20,22,21,24,21)$ be a r.s. drawn from $N, 6^{-}$Obtain a $95 \%$ confidence interva for $u$.

$$
\mathrm{H}_{0} \mathrm{O}=1 \text { against }
$$

25. If $\times 0.5$ is the C.R. for testing $H, \quad=2$, by means of a single observation from a population, $f(x, \theta)=\frac{1}{\theta}, 0 \leq x \leq \quad$ obtain the sizes of type I and type II errors.
26. Let $\left(x_{1}, x_{2}, \ldots, \times 9\right)$ be a r.s. of size 9 from $N(0,25)$. If, for testing $H_{v} \quad=20$, against $H_{1}: 0=26$, the C.R. is denoted by $\mathrm{W}=\left\{\begin{array}{ll}x & >23.266\end{array}\right\}$, find the size of the C.R.
27. Show that t -distribution tends to normal distribution under certain conditions.
28. Show that, for an F-distribution with ( $\mathrm{m}, \mathrm{n}$ ) d.f., the $r$ raw moment is

$$
r={ }^{\prime} n \begin{aligned}
& n \\
& r^{\prime} \\
& \left.\right|_{2}+r \\
& \left.\left.\right|_{2}\right|_{\mathrm{n}} \\
& \mathrm{~m}_{2}-r
\end{aligned}
$$

what is $\mu$ ?
( $5 \times 2=10$ weightage)
IV. Essay type questions. Answer any twó questions.
29. (a) Show that if F has an F -distribution with ( $\mathrm{s} \mathrm{n}_{2}$ ) d.f., - has an F-distribution with

$$
\left(n, n_{1}\right) \mathrm{di}
$$

(b) Also, explain the relation between $t$ and F distributions.
30. (a) Find the moment estimator and m.l.e. for the parameter 0 if the distribution,

$$
f(x 0)=(0+1) \quad, O \times 1 .
$$

(b) If a r.s. of size 8 from this population produces the data :

$$
0.2,0.4,0.8,0.5,0.7,0.9 .0 .8,0.9, .
$$

find that values of moment estimator and m.l.e. of 0 .
31. Explain (i) the large sample test for the equality of population proportions ; and (ii) chi-square test for the independence of two attributes.

