THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2013 (U.G.-CCSS)

(Complementary Course)
MM 3C 03-MATHEMATICS

Time : Three Hours

Maximum : 30 Weightage
I. Objective Type Questions: Answer all questions :

Each question of weightage
1 Check for exactness:

$$
\left(\mathbf{x}^{3}+3 x y \quad d x+\left(3 x^{2} y \quad y^{-}\right) d y=0\right.
$$

2 Curves that intersect a given curve at right angels are called \qquad
3 Solve y c $=\log \mathrm{x}$.
4 When is a square matrix A said to be non-singular ?
13
5 Find the characteristic roots of 11021

6 If ' 2 ' is an eigenvalue of a square matrix A, give one root of AT.
7 Define a solenoidal vector.
8 When are two vectors a and \vec{b} said to be orthogonal ?
9 What is the divergence of $\vec{a}=\left[\begin{array}{lll}x^{2}, y^{2} & z^{2} & \text { ? }\end{array}\right.$
10 Find a unit normal vector to the surface $S \quad x^{2}+y^{2}+z^{2} \quad a^{2}$.
11 Give the parametric representation of the plane $3 x+2 y+z=6$.

12 If $={ }_{g} \operatorname{rad} f, f=x^{2}+y^{2}+2 z^{2}$, find $\int \vec{F}$ od where \mathbf{C} has initial point $\mathbf{A}(0,0,0)$ and terminal point B: (2, 2, 2).
(12 $X^{1 / 4}=3$ weightage)
II. Short Answer Type Questions : Answer all questions.

Each question of weightage 1.
13 Find the rank of the following matrix

$$
\left.\mathrm{A}=\begin{array}{cccc}
4 & 7 & 6 \\
8 & 1 & 4 & 12 \\
\text { L1 } & 1 & 1
\end{array} \right\rvert\,
$$

14 State Cayley Hamilton Theorem.
15 Solve $\left(1+x^{2}\right) d x^{-1+y^{2}, y(0)=1 . ~}$
16 Find an integrating factor for $2 \mathrm{x} \tan \mathrm{y} d x+\sec ^{\mathrm{t}} \mathrm{y} d y=\mathbf{0}$.
17 Find the work done by $\vec{p}=[2,6,6\}$ if it displaces a body from A : $(3,4,0)$ to $\mathrm{B}:(5,8,0$
18 Prove that $\operatorname{div}[\operatorname{grad} f]=V^{2} f$.
19 Find the tangential and normal accelerations of $\vec{r}(t)=[b \operatorname{cost}, b \sin t, c]$.
20 Check for path independence :

$$
\sinh x z(z d x-x z d z)
$$

21 Use Green's Theorem to evaluate \mathbf{F} od \ddot{r}, where $\mathrm{F}=\operatorname{grad}(\sin x \cos y)$ and C is the ellipse $25 \mathrm{x}^{2} 9 \mathrm{y}^{2}=225$.
III. Short Essay or Paragraph Questions : Answer any five questions :

Each question of weightage 2.
22 Solve $2 x y y^{\prime}=y^{2} \quad x^{2}$.
23 Find the rank by reducing to normal form :

24 Find the eigenvalues of $\left.A=\begin{array}{lll}10 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array} \right\rvert\,$

25 Find the directional derivative of $\mathbf{f}\left(x^{2}+y_{2}+z^{2} \quad 2\right.$ at $(3,0,4)$ along $\vec{a}=[1,1,1]$.
26 Find the length of the hypocycloid $\quad(t)=\mathrm{a} \cos ^{-} t l+\mathrm{a} \sin ^{-} t J$.
27 Test for exactness and hence evaluate :

```
(4, 1/2)
\int2\textrm{x}\operatorname{sin}\piydx+\pi\mp@subsup{x}{}{-}\operatorname{cos}\piydy.
```

28 Evaluate using the Gauss Divergence Theorem : on $d \mathrm{~A} \quad \overrightarrow{\mathbf{F}}=\left[x^{3} y 3, z^{3}\right.$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=9$.

$$
\text { (} 5 \times 2=10 \text { weightage) }
$$

IV Essay Questions : Answer any two questions.
Each question of weightage 4.
29 Find the Orthogonal Trajectories of $\mathrm{y}=c \sqrt{x}$
30 Use Cayley Hamilton Theorem to find A^{3} and A^{4} if $\left.A=\begin{array}{rrr}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{array} \right\rvert\,$
31 Verify Stokes' Theorem for $\overrightarrow{\mathrm{F}}=, z, x]$ and S is the portion of the paraboloid $\left.z=1-\mathrm{x}^{2}+y^{2}\right), z \quad 0$.

