THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2013

(UG-CCSS)

Complementary Course—Statistics

ST 3C 03-STATISTICAL INFERENCE

Time : Three Hours

Maximum: 30 Weightage

Part A

Answer all questions. Each question carries $\frac{1}{4}$ weightage.

1. The mean of the Chi-square distribution with n d.f. is :

(a) n.		(b) 2n.
(c) $n-2$.		(d) None of these.

X follows N (0, 1) and Y follows a Chi-square with n degrees of freedom then $\int_{V}^{X} is$ distributed

as

- (a) Chi-square with n-1 degrees of freedom.
- (b) t-distribution with n-1 degrees of freedom.
- (c) t-distribution with n degrees of freedom.
- (d) Chi-square with n degrees of freedom.

3. Standard deviation of the sampling distribution of an estimator is called :

- (a) Sampling error. (b) Standard error.
- (c) Means square error. (d) None of these.
- 4 f t_{μ} is consistent estimator of 0 then as $n \rightarrow \infty$:
 - (c) Var $\rightarrow \infty$. (d) Var (t_n 0.

5. If X_1, X_2, \mathbf{x}_n is a random sample from a population p^x (1 p) for $\mathbf{x} = 0, 1$ and 0 , the sufficient statistics for p is

- (a) Xi. (b) 117_{1} Xi.
- (c) Both (a) and (b). (d) None of these.

6. Fisher Neyman factorization criterion is used to obtain an estimator which is :

(a) Consistent.(b) Unbiased.(c) Efficient.(d) Sufficient.

Turn over

g test is a test for goodness of fit :

(b) F-test.

(d) All of the above.

lence co-efficient (1-a), the most preferred confidence interval for the parameter

shortest width.	(b) With largest width.

(c) 1 an average width. (d) None of these.

9. A hypothesis which completely specified the form of the distribution of the population is called :

(a) Simple.(b) Composite.(c) Null.(d) None of these.

10. Level of significance is the probability of

e test.

(a) Type I error.(b) Type II error.(c) No error.(d) None of these.

11. Distribution of the test statistic used to test H_0 : $\sigma = \sigma_0^2$, where a^2 is the variance of a normal population with known mean :

- (a) Chi-square distribution with n-1 degrees of freedom.
- (b) Chi-square distribution with n degrees of freedom.
- (c) t distribution with n-1 degrees of freedom.
- (d) t distribution with n degrees of freedom.

12. The value of Chi-square statistic is zero if and only if :

- (a) $\sum_{l} O_{l} = \sum_{l} E_{l}$.
- (b) $O_i = E_i$ for all *i*.
- (c) \mathbf{E}_{i} is large.

 $(12 \text{ x}^{1}/_{4} = 3 \text{ weightage})$

Part B

Answer all nine questions. Each question carries 1 weightage.

13. Define a t-statistics.

14. If $X_1, X_2, ..., X_n$ is a random sample from a normal population with mean μ and variance a^2 , obtain the distribution of $\frac{1}{n}$ X_i .

n

- 15. Distinguish between point estimation and interval estimation.
- 16. Define consistency of estimators.
- 17. Define the concept of efficiency.
- 18. If X_1, \ldots, X_n is a random sample from a uniform distribution over (0, 0), obtain the moment estimator for 0.

- 19. Define type I and type II error.
- 20. Define power of a test.
- 21. Write down the test statistic used to test the equality of means of two normal populations, when the variances are known.

 $(9 \times 1 = 9 \text{ weightage})$

Part C

Answer any five questions. Each question carries 2 weightage.

- 22. State the relation between the normal, Chi-square, t and F distributions.
- 23. State Fisher Neyman factorization criterion.
- 24. Describe maximum likelihood method of estimation.
- 25. Obtain a sufficient estimator for 0 using a sample of size n from f, O) = $\frac{1}{\sqrt{2\pi\theta}}e^{-x^2/2\theta}$
- 26. Obtain a 95 % confidence interval for the mean of a normal population when S.D. is known.
- 27. State Neyman-Pearson Lemma.
- 28. Describe paired sample t-test.

 $(5 \times 2 = 10 \text{ weightage})$

Part D

Answer any two questions. Each question carries 4 weightage.

- 29. If X₁, X₂, ..., X_μ is a random sample from a normal population with mean μ and variance a², obtain the distribution of sample mean and variance.
- 30. Let $X_1, X_2, ..., X_n$ is a random sample from a normal population with mean μ and variance a^2 , obtain the MLE's of μ and a^2 .
- 31. Explain the test procedure for test the equality of variances of two normal populations with known means.

 $(2 \times 4 = 8 \text{ weightage})$