THIRD SEMSESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2012
Mathematics-Core Course
MM 3B 03-CALCULUS
Time : Three Hours
Maximum : 30 Weightage

Part I

I. Answer all the twelve questions

1 Write the domain and range of the function $y=\sqrt{1-x^{2}}$
2 If $f(x)=x+5, g(x)=\mathbf{x}^{2}-3$ find (g $\left.0 f\right)(\mathbf{0})$.
3 Graph the function $f(x)=\left\{\begin{array}{c}x, \mathbf{O} \mathbf{S} \mathbf{x}<\mathbf{1} \\ 2-x, 1 \leq x \leq 2\end{array}\right.$

4 What real numbers satisfy the equation $\lfloor x\rfloor=0$?

5 Find ${ }_{x} \operatorname{lima}_{2}{ }^{\prime} \frac{x^{2}-3 x+2}{}{ }^{3}-4 \mathrm{x}$

6 For what value of ' \mathbf{a} ' is $f(x \quad \operatorname{tax} \mathbf{x} \mathbf{3}$ continuous for every \mathbf{x} ?
7 Find the critical points of the function $f(x)=x^{4}-4 x^{3}+10$.
8 Define linearization of $f(x)$ at $x=\mathbf{a}$.
9 Express $1-2+48+.16-32$ in sigma notation.
10 Find the average value of $f(x)=x^{-}-1$ is $[0, \sqrt{3}]$.
11 Find the work done by the force $f(x)=30 \times$ along \mathbf{x} axis from $x=0 \mathrm{~m}$ to $x=2 \mathrm{~m}$,
12 Write the shell formula for revolution about y axis.
($12 \times 1 / 4=3$ weightage)

Part II

II. Answer all the nine questions

13 Find the vertex and axis of the parabola $y=-x^{2}-x+4$.
$14 f\left(x \quad \begin{array}{c}\mathrm{x}+1 \\ \mathrm{x}=1\end{array}\right.$. Does ${ }_{-{ }_{-*}^{*} \mathrm{l}} \mathrm{f} \quad$ exist? Why?
15 At what points does the function $\mathrm{y}=[x-11+\sin x$ is continuous?
16 Find the value of c in the mean value theorem for the function $f(x)=x+\frac{1}{\text { in }}\left[\left.\frac{1}{2} \right\rvert\,\right.$

17 Use Sandwich theorem to find the asymptotes of the curve $\mathrm{y}=\angle+^{\sin \mathrm{x}}$,

18 Evaluate $\int 3 x \sqrt{x 4-1} d x$.

19 Find the area between $\mathrm{y}=\sec x$ and $\mathrm{y}=\boldsymbol{\operatorname { s i n }} x$ from $\mathrm{x}=0$ to $x=4$
20 Define moment of a system about origin.
21 Write the formula for finding centre of mass of a thin rod along x axis with density $\delta(x)$.

Part III

III. Answer any five questions from seven:

$$
22 f\left(\begin{array}{c}
(\mathrm{x}+3)[\mathrm{x}+2] \\
\mathrm{x}+2
\end{array} \text { find } \quad \mathfrak{f}\left({ }^{\mathrm{x}}\right) \text { and } \quad \boldsymbol{f}\right.
$$

23 Test the continuity of the function $f(\mathrm{x})=\mathrm{x} \sin \frac{1}{-}$

24 Find two positive integers whose sum is 20 and whose product is as large as possible.

25 Find the area of the region between and the graph of $f(x)=x^{3}-x^{2}-2 x, 1<x<2$.
26 Find the volume of the solid generated by revolving the region between the parabola $x=y^{2}+1$ and the line $\mathrm{x}=3$ about line $x=3$.

2 Find the length of the curve $y=\frac{4 \sqrt{2}}{3} x^{3 / 2} \quad 1$ for $\mathrm{O}<\mathrm{x}<$
28 Find the centre of mass of a thin plate of constant density and covering the region bounded by the parabola $\mathrm{y}=\mathrm{x}-\mathrm{x}^{2}$ and the line $\mathrm{y}+\mathrm{x}=0$.

$$
(5 \times 2=10 \text { weightage })
$$

Part IV

Answer any two questions from three :-
$29 \lim _{\mathrm{x} \rightarrow 5} \sqrt{x}-1=2$. Find a $\delta>0$ that works for e
30 Find the asymptotes of the curve

$$
f(\mathrm{x})=\begin{aligned}
& \mathrm{x}^{3}- \\
& 2 \mathrm{x}-\text { and find the dominant terms. }
\end{aligned}
$$

31 Find the area of the surface generated by revolving the curve $y=\frac{n^{3}}{9}, \mathrm{O} \times \mathrm{I} .2$ about x axis.

$$
\text { (} 2 \times 4=8 \text { weightage) }
$$

