THIRD SEMSESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2012

Mathematics—Core Course

MM 3B 03—CALCULUS

Time : Three Hours

Maximum: 30 Weightage

......

Part I

I. Answer all the *twelve* questions

1 Write the domain and range of the function $y = \sqrt{1 - x^2}$

2 If f(x) = x + 5, $g(x) = X^2 - 3$ find (g 0 f) (0).

3 Graph the function $f(x) = \begin{cases} x, 0 \ S \ x < 1 \\ 2 - x, 1 \le x \le 2 \end{cases}$

4 What real numbers satisfy the equation |x| = 0?

5 Find
$$\lim_{x \to 2^{+}} \frac{x^2 - 3x + 2}{3 - 4x}$$

6 For what value of 'a' is f(x) $x = -1, x \leq 3$ tax x 3 continuous for every x?

- 7 Find the critical points of the function $f(x) = x^4 4x^3 \pm 10$.
- 8 Define linearization of f(x) at x = a.
- 9 Express 1 2 + 4 8 + .16 32 in sigma notation.
- 10 Find the average value of $f(x) = x^2 1$ is $[0, \sqrt{3}]$.

11 Find the work done by the force f(x) = 30 x along x axis from x = 0 m to x = 2m,

12 Write the shell formula for revolution about y axis.

 $(12 \text{ x} \frac{1}{4} = 3 \text{ weightage})$

Turn over

Part II

II. Answer all the nine questions

13 Find the vertex and axis of the parabola $y = -\frac{l}{x}^2 - x + 4$.

14
$$f(x) = \frac{x+1}{x=1}$$
. Does ... f exist ? Why ?

15 At what points does the function $y = [x - 11 + \sin x]$ is continuous ?

16 Find the value of *c* in the mean value theorem for the function $f(x) = x + \frac{1}{2}$ in $\left| \frac{1}{2} \right|$

17 Use Sandwich theorem to find the asymptotes of the curve $y = z + \frac{\sin x}{2}$.

18 Evaluate $\int 3x \sqrt{x^4 - 1} \, dx$.

19 Find the area between $y = \sec^{x} x$ and $y = \sin x$ from x = 0 to $x = \frac{4}{4}$

20 Define moment of a system about origin.

21 Write the formula for finding centre of mass of a thin rod along x axis with density $\delta(x)$.

 $(9 \times 1 = 9 \text{ weightage})$

Part III

III. Answer any *five* questions from seven:

22
$$f(\begin{array}{c} (x+3) [x+2] \\ x+2 \end{array} find \begin{array}{c} f(x) \text{ and } \end{array} f$$

23 Test the continuity of the function $f(x) = x \sin \frac{1}{2}$

24 Find two positive integers whose sum is 20 and whose product is as large as possible.

25 Find the area of the region between and the graph of $f(x) = X^3 - x^2 - 2x$, $1 \le x \le 2$.

26 Find the volume of the solid generated by revolving the region between the parabola $x = y^2 + 1$ and the line x = 3 about line x = 3.

- 2 Find the length of the curve $y = \frac{4\sqrt{2}}{3} x^{3/3}$ 1 for 0 < x < 3
- 28 Find the centre of mass of a thin plate of constant density and covering the region bounded by the parabola $y = x x^2$ and the line y + x = 0.

 $(5 \ge 2 = 10 \text{ weightage})$

Part IV

Answer any two questions from three :-

29 $\lim_{x \to 5} \sqrt{x} - 1 = 2$. Find a $\delta > 0$ that works for e

30 Find the asymptotes of the curve

$$f(\mathbf{x}) = \frac{\mathbf{x}^3 - \mathbf{x}^3}{2\mathbf{x} - \mathbf{x}^3}$$
 and find the dominant terms.

31 Find the area of the surface generated by revolving the curve $y = \frac{x^3}{6}$, $O \propto I.2$ about x axis.

 $(2 \times 4 = 8 \text{ weightage})$