.

Reg. No.

THIRD SEMESTER B.Sc. (COMPUTER SCIENCE) DEGREE EXAMINATION NOVEMBER 2010

(CCSS)

Statistics—Complementary Course

ST3 C03—STATISTICAL INFERENCE

Time : Three Hours

Maximum Weightage: 30

I. Answer all twelve questions

1 If , x_z ,,) is a r.s. from N(μ , a ²	, then the statistic $\frac{1}{S}$ is —
(a) t-variate with n d.f.	(b) t -variate with $n - 1$ d.f.
(c) \mathbf{x}^2 -variate with n d.f.	(d) x^2 -variate with $n-1$ d.f.
2 The square of a <i>t</i> -variate with n d.f. is	
(a) a t -variate with n d.f.	(b) \mathbf{a} t - variate with n^2 d.f.
(c) F-variate with (1, n) d.f.	(d) F-variate with (n, 1) d.f.
3 The theory of estimation was founded by :	
(a) R.A. Fisher.	(b) Neyman.

(c) Pearson. (d) C.R. Rao.

4 Let $(x_1, x_2, ..., x_n)$ be a r.s. from N(μ, σ Then, which of the following estimators is unbiased for σ ?

(c)
$$\frac{\sum (x_i - \overline{x})}{\sum (x_i - \overline{x})^2}$$
 (d)
$$\frac{\sum (x_i - \overline{x})}{2}$$

5 The mean of a r.s. of size 100 from N μ , 6^2) is 30. If $a^2 = 25$, then a 95% confidence interval for p is :

(a) [29.02, 30.98].	(b) [27.5, 32.5].
(c) [25.1, 34.9].	(d) None.

6 Let $x_1, x_2, ..., x_n$ be a r.s. from N(μ, a^2 . Then a 100 (1 -- ∞)% confidence interval for a^2 can be constructed using ______ distribution.

(a) Normal.	(b) Chi-square.
(c) <i>t</i> .	(d) F.

Turn over

7 A 100 (1 ∞)% confidence interval for a² of N(σ , based on a r.s. of size n is given by :

(a)
$$\begin{array}{c|c} ns & ns \\ \chi^{2(n-1)}_{\alpha/2} & 2(n-1) \\ -\alpha/2 \end{array}$$
 (b) $\left| \overline{X} - t_{\alpha/2} \cdot \frac{s}{\sqrt{n}} \mathbf{x} + t_{\alpha/2} \cdot \frac{s}{\sqrt{n}} \right|$
(c) $\left[\overline{X} - z_{\alpha} \cdot \frac{s}{\sqrt{n}}, \overline{x} + z_{\alpha} \cdot \frac{s}{\sqrt{n}} \right]$ (d) None.

8 A 95% confidence interval for the population proportion based on a large sample proportion p is given by _____

(a)
$$p \pm 1.95 \quad \frac{pq}{n-1}$$
 (b) **P** $1.95 \sqrt{\frac{pq}{r}}$

(c)
$$p \pm 1.96$$
 (d) $p \pm 1.96$ **pq**

9 The theory of testing of hypothesis was initiated by —

- (a) A.Wald. (b) R.A. Fisher.
- (c) C.R. Rao. (d) Neyman and Pearson.,

10 The Neyman-Pearson lemma provides the B.C.R. for testing ______ hypothesis against _____ alternative.

- (a) Simple, simple. (b) Simple, composite.
- (c) Composite, simple. (d) Composite, composite.

11 For testing:

 $H_o: \mu = \mu_v$ against

 $H_i < \mu_v$, based

on a large sample, the B.C.R. is given by :

(c)
$$\overline{\underline{X}}_{\alpha} = \frac{-\mu_0}{s/\sqrt{n}} < Z$$
 (b) $\frac{\underline{X} - \mu_0}{s/\sqrt{n}} = Z_{\alpha}$.
(c) $\overline{\underline{X}}_{\alpha} = \mu_0 < Z_{\alpha}$. (d) None.

where Z_i is such that $P\{Z > Z_i = \infty\}$

12 The test for equality of variances of two normal populations is based on ______ distribution.

- (a) Normal. (b) t.
- (c) x^{2} (d) **F**.

 $(12 \times V4 = 3 \text{ weightage})$

III. Short answer type questions. Answer all *nine* questions :

13 Define (i) Statistic ; (ii) Sampling distribution. Given an example for each.

14 (i) Define a t-statistic for testing : H_o : = μ_u based on a r.s. from N(μ, σ

(ii) Also write down the p.d.f. of the statistic.

- 15 (i) Define unbiasedness and consistency.
 - (ii) Give an example for an estimator which is unbiased as well as consistent.
- 16 Define 'Sufficiency' and state the Neyman factorization theorem.
- 17 Define : (i) Confidence interval;
 - (ii) Confidence coefficients.
- 18 Define : (i) Type I error; and
 - (ii) Type II error.
- 19 Define : (i) Simple hypothesis; and

(ii) Composite hypothesis.

Give an example for each.

- 20 Define : (i) Critical Region; and
 - (ii) Most powerful critical Region.
- 21 Write down the test statistic and Best critical Region associated with the test for goodness of fit.

 $(9 \times 1 = 9 \text{ weightage})$

ILI'

- III. Short Essay or paragraph questions. Answer any five questions :
 - 22 Obtain the m.g.f. of Chi-square distribution and show that the distribution satisfies additive property.
 - 23 (i) Obtain the mode of F-distribution.
 - (ii) What is the mode of the F-distribution with (4, 3) d.f.?
 - 24 Explain the method of moments.
 - 25 **Obtian** the moment estimator of the parameter X of the Poisson distribution $P(\lambda)$.
 - 26 The sample variance $S^2 = \frac{E(x_i \overline{x})^2}{n}$, based on a r.s. of 15 observations, from a Normal population is 12. Obtian a 95% confidence interval for the population variance.

- 27 If x > 1 is the CR for testing $H_0: 0 = 2$ against the alternative $H_1: 0 = 1$, on the basis of a single observation from the population, $f(x, 0): \theta e^{-x} 0 < x < \infty$. Obtain the probability of type I and type II errors.
- 28 Find the power of the test for testing $H_0 = O = 2$ against $H_1: O = 1$ based on a r.s. (x_1, x_2) of

size 2 from a population, $f(x, 0) = -e^{-\frac{\pi}{2}}$, $x < c_0$. Take the C.R. as $C = \{(x_1, x_2) : 9.5 < x_1 + x_2\}$.

 $(5 \ge 2 = 10 \text{ weightage})$

IV. Essay type questions. Answer any two questions :

29 (i) Define t-distribution and show that $F_{2r} = \frac{n^r (2r - 1) (2r - 3) \dots 3.1 n}{(n - 2) (n - 4) \dots (n - 2r) 2} r$ and $F_{2r+1} = 0$,

for *r* = 1, 2, 3, ...

- (ii) Also, obtian the and y coefficients and interpret the Skewness and Kurtosis.
- 30 In random sampling from normal population N(, 6^{2}) find the maximum likelihood estimators for :
 - (i) μ when σ is known
 - (ii) σ when μ is known, and
 - (iii) simultaneous estimation of μ and a^2 .
- 31 Explain (i) the t-test for equality of means and ; (ii) F-test for equality of variances of two normal populations.

 $(2 \times 4 = 8 \text{ weightage})$