THIRD SEMESTER B.Sc. DEGREE EXAMINATION NOVEMBER 2014
 (U.G.-CCSS)

Complementary Course
 MM 3C 03-MATHEMATICS

Time : Three Hours
Maximum : 30 Weightage

Section A
Answer all questions.
Each question carries $1 / 4$ weightage.

1. Show with an example that scalar product of vectors is commutative.
2. Find the acceleration of a particle with position vector $\vec{r}(t)=[\sin t, 0,0]$.
3. If $f x^{2}+y^{2}+z^{2}$, find $\operatorname{grad} f$
4. What is the Cartesian form of $\vec{r}(\mathrm{u}, \mathrm{v})=[u a \cos \mathrm{v}, u b \sin \mathrm{v}, \mathrm{u}]$?
5. If $\mathbf{F}=\operatorname{grad} f$, then $\operatorname{curl} \overrightarrow{\mathbf{F}}$
6. Find the unit vector normal to the surface $\mathbf{x}^{2}+y^{2}+z^{2}=9$
7. Verify that $y=e x+a x^{-}+b x+c$ is a solution $y=e x$
8. Solve $y^{\prime}=-2 x y$
9. Test for exactness : $-\frac{y_{2}}{\mathrm{x}} d x \quad x=0$.
10. Define rank of a matrix.
11. Is the matrix $\left.\begin{array}{cc}{\left[\begin{array}{l}5 \\ 7 \\ 7\end{array}\right.} & 6\end{array}\right]$ singular or non-singular ?
12. State Cayley Hamilton theorem.
($12 \times 1 / 4=3$ weightage)

Section B

Answer all questions.

Each question carries 1 weightage.

13. Find the angle between $x+y+z=1$ and $x+2 y+3 z=6$.
14. Find a parametric representation of the straight line through $(4,2,0)$ in the direction of $[1,1,0]$.
15. Find the length of the semi cubical parabola $\vec{r}(t)=t, t^{3 / 2}, 0$ from $(0,0,0)$ to $(4,8,0)$.
16. Evaluate \int od $r, F(\vec{r})=[z, x, y], C: F(t)=[\cos t, \sin t, 3 t]$ and $0<t s 2 \pi$.
17. Use Green's theorem to find the area enclosed by the circle $\mathbf{x} 2+y^{2}=\mathbf{a}^{2}$.
18. Solve the initial value problem $2 \sin 2 x \sinh y d x-\cos 2 x \cosh y d y=0, y(0)=1$.
19. Find an integrating factor : $2 \cosh \mathrm{x} \cos y d x=\sinh x \sin y d y$
20. Find the rank of $\left|\begin{array}{ccc}1 & 3 & 6 \\ 2 & 6 & 12\end{array}\right|$
21. Find the eigen values of $\left[\begin{array}{cc}0 & a \\ -a & 0\end{array}\right]$.
($9 \times 1=9$ weightage)

Section C

Answer any five questions.
Each question carries 2 weightage.
22. (i) Find the potential function of $[y z, x z, x y]$.
(ii) Test whether irrotational $=[2 \bar{y}, 0,0]$.
23. Test for path independence and if independent, integrate from $(0,0,0)$ to $(a, b, c): \cos (x+y z)[d x+z d y+y d z]$.
 $-x^{3}, y^{3}, S$ is the surface of the sphere $x^{2}+y^{2}+z^{2}=4$.
25. Solve $y^{\prime}+y \sin x=e^{\cos x}$
26. Solve using the transformation $=v: 2 x y y=y^{2}-x^{2}$.
$\left.\begin{array}{llll}1 & 1 & 1 & 2\end{array}\right]$
27. Find the rank by reducing to normal form : $A=21-3-6$

$$
3-312
$$

28. Using Cayley Hamilton theorem. Find the inverse of : $\left.\begin{array}{rlrl}\mathbf{A}= & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{array} \right\rvert\,$

$$
\text { (} 5 \times 2=10 \text { weightage) }
$$

Section D

Answer any two questions.
Each question carries 4 weightage.
29. State Stokes' theorem and verify it for $=\left[y^{2}, z^{2}, x^{2}\right]$ S being the portion of the paraboloid

$$
\mathrm{x}^{2}+\mathrm{y}^{2}=z, y
$$

30. (i) Solve $y^{\prime}+2 y=y^{2}$.
(ii) Find the Orthogonal trajectories of $\mathrm{y}=\boldsymbol{c} e^{\boldsymbol{x}}$.
31. Find the eigen values and eigen vectors of

