THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2013 (UG-CCSS)
 Core Course-Mathematics
 MM 3B 03-CALCULUS

Time : Three Hours
Maximum : 30 Weightage
I. Answer all twelve questions :

1 Evaluate $\lim _{\mathrm{x} \rightarrow 1} \mathrm{x}^{2} \stackrel{+x-2}{\mathbf{x}^{2}-x}$.
2 State the Sandwich theorem.
3 Define the intermediate value theorem.
4 At what points are the function $Y=\frac{\cos x}{x}$ is continuous.
5 State the first derivative theorem for local extreme values.
6 Define the critical point of a function f.
7 What are the critical points of f given $f^{\prime}(x)=x(x-1)$?
8 Find the intervals in which the function f is increasing given $f(x)=x(x-1)$.
9 Evaluate $\lim _{3 x^{2}} \frac{5 x^{2}+8 x-3}{3}+2$
10 Find $d y$ if $y=x^{5}+37 x$.
11 Write the sum without sigma notation and then evaluate the $\operatorname{sum}_{k=1 k+1}^{26 \mathbf{6 k}}$
12 Suppose that $\int_{1}^{2} f(x) d x=5$. Find $\int_{1}^{2} f(u) d u$.
(12 $\times 1 / 4=3$ weightage)
II. Short Answer Type Questions. Answer all nine questions :

13 Find the work done by a force of $F(x)=\frac{1}{2} N$ along the x-axis from $x=1 \mathrm{~m}$ to $x=10 \mathrm{~m}$.
14 A spring has a natural 'length of 1 m . A force of 24 N stretches the spring to a length of 1.8 m . Find the force constant k.

15 Find the volume of the solid generated by revolving the region between the y-axis and the curve $x=21 \quad 4$ about the y axis.

16 Evaluate $\int_{-1}^{1} 3 \mathrm{x}{ }^{\circ} \vee x^{3}+1 d x$

17 Find $\frac{d y}{d x} \cdot \underset{1}{\mathrm{f}} \underset{1}{x 2} \cos t d t$.
18 Find the average value of $f(x)=4-x^{2}$ on $[0,3]$.
19 Show that the value of $\begin{aligned} & \frac{1}{J} \\ & 0\end{aligned} \overline{+\cos x} d x$ cannot possibly be 2.
20 Evaluate $\sum_{k=1}^{4}(k-3 k)$.

21 Find the linearization of $f(x)=\cos \mathrm{x}$ at $\mathrm{x}=\frac{\pi}{2}$
III. Short Essay or Paragraph questions. Answer any five questions

22 Show that the centre of mass of a straight thin strip or rod of constant density δ lies halfway between its two ends.

23 Find the lateral surface area of the cone generated by revolving the line segment $y=\frac{x}{2}, O<x 4$ about the x-axis.

24 Find the volume of the solid generated by revolving the region between the parabola $\mathrm{x}=\mathrm{y}^{2}+1$ and the line $\mathrm{x}=3$ about the line $\mathrm{x}=3$.

$$
\mathrm{n} / 6
$$

25 Evaluate $\mathrm{f}_{0} \cos ^{-0} 20 \sin 20 d 0$.

26 Find the total area between the region $y=-x^{2}-2 x,-3<x<2$ and the x-axis.
27 Express the solution of the following initial value problem as an integral
Differential equation: $\frac{d y}{d x}=\tan \mathrm{x}$
Initial condition $\quad: y(1)=5$.
28 Show that among all rectangles with a given perimeter the one with the larger area is a square.
IV. Essay questions. Answer two questions :

29 A 10 m . long rod with thickness 5.52 has density $5(x)=\frac{I}{1}+\frac{\$ 2}{10} \mathrm{~kg} / \mathrm{m}$. Find the rod's centre of mass.

30 Find the area of the region in the first quadrant that is bounded above by $y=\sqrt{x}$ and below by the x -axis and the line $\mathrm{y} \mathrm{x}-2$.
31 The cost function at American Gadget $C(x)=x^{3}-6 x^{2}+15 x$ (x is thousands of units). Is there a production level that minimize average cost? If so, what is it ?

