THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2014 (U.G.-CCSS)

Core Course-Mathematics
 MM 3B 03-CALCULUS

Tir : Three Hours
Answer all questions :-
1 Let $\mathbf{F}(t)=2(t-1)+3$. Evaluate \mathbf{F} at the input value $x+2$.
2 If $f(x)=\sqrt{x}$ and $g(x)=x+1$ find $(f \circ g) x$.
3 Find the domain and range of $f(x)=1+\mathbf{x}^{2}$.
4 Evaluate $x^{\cdot} \quad-2{ }^{2 x-4}+2 x^{2}$.

5 At what points are the function $\mathrm{y}=\underset{x-2}{\underline{1}} \quad 3 \mathrm{x}$ is continuous.
6 State Rolle's theorem.
7 What are the critical points of I given

$$
f^{\prime}(x)=(x-1)(x+2)(x-3)
$$

8 Evaluate $\lim _{\rightarrow \infty} \frac{5 x^{2}}{\underline{2}+8 x-3} \begin{gathered} \\ 3 x+2\end{gathered}$.

9 Find $d y$ if $y=-\frac{2 \mathbf{x}}{1+x} 2$.
10 Find the intervals in which the function I is increasing. Given $r(x)=x(x-1)$.

11 The length of the longest sub interval of a partition is called its \qquad
12 Evaluate $\int_{0}^{\pi / 3} 2 \sec ^{-} \mathrm{x} d x$.
(12 $\times 1 / 4=3$ weightage)
IL Answer all nine questions.
13 Find the volume of the solid generated by revolving the region bounded by the lines $y=0$, $x=2$ and the curve $y=x^{3}$.

14 Find $\frac{d y}{d x}$ if $\mathrm{y}=\int_{1}^{\mathrm{x}^{2}} \cos t \boldsymbol{d t}$.

15 Find the average value of $f(x)=-3 x^{2}-1$ on $[0,1]$.

16 Evaluate $\sum_{k=1}^{6}\left(3-k^{2}\right)$.

17 Find the linearization of $f(x)=\sqrt{1+x}$ at $x=0$.

18 Find the absolute maximum and minimum values of $f(x)=-x-4,-4-x 5 _1$.

19 Find the function $f(x)$ whose derivative is $\sin x$ and whose graph passes through the point $(0,2)$.

20 Find the work done by a force of $F(x)=\underset{x^{2}}{1}$ along the x-axis from $x=1 \mathbf{m}$. to $x=10 \mathrm{~m}$.

21 Evaluate $\int_{0}^{\pi / 4} \tan x \sec ^{-} \mathrm{x} d x$.

III. Answer any five questions :-

22 Find the lateral surface area of the cone generated by revolving the line segment $Y=2$
$0 \quad x<-4$, about the y-axis.

23 Find the length of the curve $\mathrm{y}=\tan x, \quad$ x s 0 .

3
24 Find the asymptotes of the curve $y=x+2$.

25 Find the area of the region enclosed by the parabola $\mathbf{y}=2-\mathbf{x}^{2}$ and the line $\mathbf{y}=x$.
26 Find the volume of the solid generated by revolving the region between the parabola $x=y^{2}+1$ and the line $x=3$ about the line $x=3$.

27 Find the intervals on which the function $g(t)=-t^{2}-3 t+3$ is increasing and decreasing.
28 About how accurately should we measure the radius r of a sphere to calculate the surface area $=4 \pi r^{-}$within 1% of its true value.

$$
\text { (} 5 \times 2=10 \text { weightage) }
$$

IV. Answer any two questions :-

29 Find the length of the curve $\mathrm{y}=\frac{4 \sqrt{2}}{3} x^{3 / 2}-1,0 \quad x \quad 1$.
30 Show that the centre of mass of a straight, thin strip or rod of constant density has halfway between its two ends.

31 State and prove the fundamental theorem of calculus.

$$
\text { (} 2 \times 4=8 \text { weightage) }
$$

