THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2010 (CCSS)
 Mathematics-Core Course
 MM 3B 03-CALCULUS

Time : Three Hours

Maximum Weightage : 30

> I. Objective Type questions (Answer all questions, weightage $12 \times 1 / 4=3$)

1. The average rate of change of the function $f(x)=x^{3}+1$ over the interval $[2,3]$ is ...
2. If $2-x^{2} 5 g(x) 52 \cos x$ for all x, then $\lim _{x \rightarrow 0} g(x)=$
3. Suppose $f^{\prime}(x)=2 x$ for all x, and if $f(0)=0$ then $f(2)=$
4. The critical points of f if $f^{\prime}(x)=x(x \quad 1)$
5. The linearization of $f(x)=x^{4}$ at $x=1$ is ...
6. $\quad 2 x+3$
$5 x+7$
7. A function with continuous first derivative is said to be ---
8. A differentiable function is always ...
9. $\frac{d}{d x} \int_{1}^{\sin x} 3 t_{2} d t=$
10. The volume of a solid of known integrable cross-section area $A(x)$ from $x=a$ to $x=b$ is .
11. The turning effect of a force about the origin is called ...
12. When a body moves a distance d along a straight line as a result of being acted on by a force of constant magnitude F in the direction of the motion, the work done by the force on the body is ...

> II. Short answer type questions:
> Answer all question ($9 \mathrm{X} 1=9$ weightage)
13. Find
14. If $f(x)=x+1$, find an open interval about 4 on which $\operatorname{If}(x) \quad 5 \mid<0.01$.
15. Find the function $f(x)$ whose derivative is $\sin x$ and whose graph passes through the point (0,2).
16. Find the interval on which the function $g(t)=-t^{-}-3 t+3$ is increasing
17. What is the smallest perimeter possible for a rectangle whose area is $16 \mathrm{~cm}^{-}$?
18. State the Mean Value Theorem for Definite Integrals
19. Evaluate $\int_{0}^{-} \sqrt{y+1} d y$
20. Find the centre of mass of a wire of constant density 6 shaped like a semicircle of radius 'a'
21. Find the work done by a variable force $F(x)=1 / x^{2} N$ along the x axis from $x=1 \mathrm{~m}$ to $x=$ 10 m.

Short Essay or Paragraph Questions

Answer any 5 questions from 7 (5X2 = 10 weightage)
22. Show that $\quad-=0$
23. Using Sandwich Theorem find the asymptotes of the curve $Y=2+$
24. Show that the value of $\int_{0}^{1} \sqrt{1}+\cos x d x$ cannot possibly be 2 .
25. Find the area of the region in the first quadrant that is bounded above by $\mathrm{y}=\sqrt{\bar{x}}$ and below by the $x=$ axis and the line $y=x$
26. Find the volume of the solid of revolution of the solid generated by revolving the region between they-axis and the curve $x=2 / y .1<y<4$
27. Find the length of the plane curve $y=(x / 2)^{213}$ from $x=0$ to $x=$
28. Show that the centre of mass of a straight, thin strip or rod of constant density lies half way between its two ends.
IV. Essay Questions:

Answer any 2 questions (2X4 = 8 weightage)
29. Consider the function f defined by

$f(x)=$| $x^{2}-1 ;-1 \quad x<0$ |
| :---: |
| $2 x ; 0<x<1$ |
| $1 ; 0 x=-1$ |
| $-2 x+4 ; 1<x<2$ |
| $0 ; \quad 2<x<3$ |

a) Find $f(-1)$
b) Does $\lim _{x \rightarrow-1+} f(x)$ exist
c) Does

$$
f(x)=f(-1)
$$

d) Is f continuous at $\mathrm{x}=-1$
30. Define absolute extrema values of a function

Find the absolute extrema values of $g(t)=8 \mathbf{t}^{2}-t^{4}$ on $[-2,1]$
31. The region bounded by the curve $y=x^{2}+1$ and the line $y=-x+3$ is revolved about the $x-$ axis to generate a solid. Find the volume of the solid.

