THIRD SEMESTER B.Sc. DEGREE EXAMINATION, DECEMBER 2011

(CCSS)
Mathematics-Core Course
MM 3B 03-CALCULUS
Time :Three Hours
Maximum Weightage : $\mathbf{3 0}$
I. Objective Type Questions. Answer all questions

I If $f(\mathbf{x}) \quad \sqrt{x}$ and $g(x)=x+1$, then $(g \circ f)(x)$
2 If $2-\mathbf{x}^{2}<\mathbf{g}(\mathbf{x})<2 \cos \mathbf{x}$ for all \mathbf{x}, then $\lim _{x \rightarrow 0} g(x)=$
$3 \lim _{u}{\underset{3}{u}-1}^{1}$
4 The linearization of $f(x)=x^{4}$ at $x=1$ is
5 A point where the graph of a function has a tangent line and where the concavity changes is called
6 The length of the longest subinterval of a partition is called its \qquad
7 A function with continuous first derivative is said to be \qquad
8 If $\quad{ }^{2} f(x) d x=5$, then $\quad{ }_{j}^{j} f(u) d u=$
$9 \underset{d x}{\underline{\mathbf{d}}} \int^{\sin \mathrm{x}} 3 t d t=$
10 is the force that results from gravity pulling on a mass.
11 The turning effect of a force about the origin is called
12 One Newton-. Ler work is called a \qquad
($12 \times 1 / 4=3$ weightage)
II. Short answer type questions. Answer all questions :

13 Is $x^{2}+3 x-1$ continuous on the real line.
14 If $f(x)=x+1$, find an open interval about $\mathbf{4}$ on which $\mathbf{I} f(x) \quad 51<0.01$.
5 State the Mean Value Theorem.
16 What is the work done by a variable force \mathbf{F} directed along the $\mathbf{x}-$ axis from $\mathbf{x}=\mathbf{a}$ to $x=b$.

17 What is the smallest perimeter possible for a rectangle whose area is $16 \mathrm{~cm}^{-}$?
18 If f is continuous on $[\mathbf{a}, \mathbf{b}]$, then at some point c in $[\mathbf{a}, b], f(c)=$ \qquad
19 Evaluate $\int_{0}^{3} \sqrt{y}+1 d y$
20 If f and g are continuous with $f(x) \quad g(x)$ throughout $[a, b]$ then what is the area o region between : the curves $\mathbf{y}=f(x)$ and $\mathbf{y}=g(x)$ from a to b ?
21 What is called the centre of mass of a system?
(9x $1=9$ weigh
III. Short Essay or Paragraph Questions. Answer any five questions from 7 :

22 Find the absolute maximum and minimum values of $f(x)=\boldsymbol{x}^{\boldsymbol{n}}$ on $[-2,1]$.
23 Find the asymptotes of the curve $y=\frac{x+3}{x+2}$
24 Show that $f(x) \quad \begin{aligned} & 1 \text { when } x \text { is rational } \\ & \{0 \text { when } \mathrm{x} \text { is irrational }\end{aligned}$ is not Riemann integrable over $[0,11$.
25 Find the area of the region in the first quadrant that is bounded above by $\mathrm{y}=\sqrt{x}$ and by the $\mathrm{x}-$ axis and the line $\mathrm{y}=x-2$.

26 Find the volume of the solid generated by revolving the region between the $y \sqrt{x}$ ant lines $\mathrm{y}=1, x=4$ about the line $\mathrm{y}=1$.

27 Find the length of the curve $y \quad(x / 2)^{2 / 3}$ from $\mathbf{x}=0$ to $\mathbf{x}=2$.
28 Show that the centre of mass of a straight, thin strip or rod of constant density lies half -w between its two ends.
($5 \times 2=10$ weightage
IV. Essay Questions. Answer any two questions

29 Consider the function (defined by

$$
\begin{gathered}
2-1 ;-1 \leq x<0 \\
2 z ; 0<x<1 \\
7 ; \quad x=1 \\
-2 x+4 ; 1<x<2 \\
0 ; 2<x<3
\end{gathered}
$$

(a) Find $f(-1)$.
(h) Does $\lim _{\mathrm{x}}+f(x)$ exist.
(c) Does $\lim _{x}+f(x)=f(-1)$ -
(d) Is f continuous at $x=-1$.

30 State and prove the fundamental theorem of Calculus.
31 Find the area of the surface generated by revolving the curve $y=x^{2}, 0<x<1 / 2$ about x -axis.
($2 \times 4=8$ weightage)

