SECOND SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, APRIL/MAY 2015
 (UG-CCSS)

Complementary Course-Mathematics

MM 2C 02-MATHEMATICS
Time : Three Hours
I. Objective Type Questions : (Answer all questions.)

1 Differentiate coth $5 x$.
2 Show that $\sinh 2 x=2 \sinh x \cosh x$.

3 Integrate $\operatorname{sech}^{-}\left(x-\frac{1}{2}\right)$.

4 Evaluate ${ }_{0}^{1} \frac{d x}{\sqrt{1}-x^{2}}$

5 Give an example of a constant sequence.
$6 \lim _{\mathrm{n}} \sqrt[n]{n^{-}}=$ \qquad
7 State Alternating Series Test (Leibniz's Theorem).
8 Write the series for in $(1+x)$.

9 Find the Taylor polynomial of order 0 generated by $f(x)=\sin \mathbf{x}$ at $\mathbf{a}=\frac{-}{4}$.
$10|r|=1$ is the equation for a

Find $\begin{aligned} & d y \\ & d x\end{aligned}$ if $x^{2}+\sin y-2 y=0$.

12 Define gradient vector.
(12 $\times 1 / 4=3$ weightage)
II. Short Answer Type Questions: (Answer all nine questions).

13 Find f_{x} if $f\left(x, \quad=\frac{2 y}{y+\cos x}\right.$

14 Find an equation for the hyperbola with eccentricity $\frac{1}{2}$ and directrix $x=2$.

15 Graph the set of points whose polar co-ordinates satisfy the conditions -3 $r \leq 2$ and $0=4$

16 Find the Maclaurin's series for $f(x)=\frac{1}{1+\mathbf{x}}$

17 For what values of x do the power series ${ }_{n=0}^{00} \quad x^{n}$ converges absolutely.

18 Given $a_{1}=a_{2}=1, a_{+2}=$ an $+1+a n \cdot$ Write the first 4 terms of the sequence.

19 Investigate the convergence of $\quad 3$ ($\mathrm{x}-1$)

20 Evaluate ${ }_{\mathrm{\rho}}^{\mathrm{\rho}} \cosh (\ln t) \mathrm{t}$.

21 Use the definition of $\cosh x$ and $\sinh x$ to show that $\cosh ^{-} x \sinh ^{-} x=1$.
III. Short Essay Questions. (Answer any five questions).

22 Is the area under the curve $Y=\frac{\text { in } x}{x_{x 2}}$ from $x=1$ to $x=$ co finite. If so, what is it ?
23 Investigate the convergence of the series

24 Find the Taylor series generated by :

$$
f(x)=x^{4}+x^{2}+\text { at a }-2 .
$$

25 Find a polar equation for the circle $x^{2}+(y-3)^{2}=9$.

26 Show that $f \left\lvert\, \begin{array}{cc}2 x y \\ 2^{2} \\ \mathbf{x}^{2}+\mathbf{y}^{2} & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$ is continuous at every point except the origin.

27 Express $\begin{aligned} & \partial w \\ & \partial r\end{aligned}$ and $\frac{\partial w}{s}$ in terms of r and $s \quad w \mathbf{X}^{2}+y^{2}, \mathbf{x}=r-s, \mathbf{y}=r+s$.

28 Find the direction in which $f(x, y)=\begin{gathered}x^{2} \\ 2\end{gathered}+\frac{y}{2}$
(a) Increases most rapidly ; and
(b) Decreases most rapidly at the point $(1,1)$.

$$
\text { (} 5 \times 2=10 \text { weightage })
$$

IV. Essay Questions. (Answer any two questions)

29 Find the linearization $\mathbf{L}(x, y, z)$ of $f(x, y, z)=x^{2}-x y+z \sin z$ at the point $(2,1,0)$. Find an upper bound for the error occurred in replacing f by \mathbf{L} over the rectangle $\mathbf{R}: I x-2 \mid \leq 0.01$, $|y-1 \mathrm{i} \leq 0.02,|z| 0.01$.

30 Find the length of the cardioid $\mathbf{r}=1-\cos 0$.

31 Evaluate ${ }_{2}^{\infty} \frac{x+3}{-1)(x+1)} d x$.

