SECOND SEMESTER B.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION DECEMBER 2012

(CCSS)

Statistics

ST 2C 02—PROBABILITY DISTRIBUTIONS

Time : Three Hours
Maximum : 30 Weightage
I. Objective type questions. Answer all twelve questions :

1. If (X, Y) is a bivariate discrete random variable, then

$$
\mathbf{X x},==
$$

(a) $P(X=x)$.
(b) $\operatorname{POC}<\mathrm{x})$.
(d) None of these.
2. For a bivariate continuous random variable (X,Y), $\mathbf{P}\left(\mathrm{a}_{1}<\mathrm{X}<\boldsymbol{a}_{2}, \quad<\mathrm{Y}<\mathbf{b}_{2}\right.$
(a) $<\mathrm{P}\left(a_{1}<\mathrm{X} \leq a_{2}, \quad b_{1}<\mathrm{Y} \leq b_{2}\right)$.
(b) $=\mathrm{P}\left(a_{1}<\mathrm{X} \leq a_{2}\right.$,
(c) $<\mathrm{P}\left(a_{1} \mathbf{a}_{2}<\right.$
b_{2}).
(d) $=\mathrm{P}\left(a_{1} \mathbf{a}_{2}<\mathrm{XY}\right.$
$\left.b_{L}\right)$.
3. If \mathbf{X} and \mathbf{Y} are independent discrete random variables, then $\mathbf{P}\left(\begin{array}{lll}\mathbf{X} & x, \mathbf{Y} & \mathbf{y}\end{array}\right.$
(b)
(c) $=\mathbf{P}(\mathbf{X}=\mathbf{x}) \cdot \mathbf{P}(\mathbf{Y}=\mathbf{y})$.
4. In case of a bivariate random variable (\mathbf{X}, \mathbf{Y}) with finite product central moments $\mu_{\mathrm{rs}} \mathbf{o f}$ order (r, s), the $\operatorname{cov}(X, Y)$ is :
(a) μ_{11}
(b) 1122
(c) $\dot{22}^{+}{ }_{\text {P02 }} \quad{ }^{\prime 20}$
(d) $\quad-\mathrm{P} 02 \quad 1 \quad{ }_{20}$.
5. $\mathrm{E}[\operatorname{Var}(\mathrm{X} \mid \mathrm{Y})]=$
(a) $\operatorname{Var}(\mathrm{X})$.
(b) $\operatorname{Var}(X) \quad \operatorname{Var}[\mathrm{E}(\mathrm{NY})]$.
(c) $\operatorname{Var}(X) \quad \operatorname{Var}[\mathrm{E}(\mathrm{NY})]$.
(d) $\operatorname{Var}(\mathrm{X})-\mathrm{E}[\mathrm{E}(\mathrm{NY})]$.
6. In case of Bernoulli distribution
(a) Mean = Variance.
(b) Mean < Variance.
(c) Mean > Variance.
(d) Mean Variance.
7. If X and Y are independent Poisson variates each with mean 3 , then $Z=X+Y$ follows
(a) Poisson with mean 3.
(b) Poisson with mean 6.
(c) Poisson with mean 9 .
(d) None of these.
8. If X follows geometric distribution with $p=\frac{1}{3}$ then $\mathrm{P}(\mathrm{X} 2)=$
(a) $\frac{1}{3}$.
(b) $\begin{array}{r}2 \\ 3\end{array}$
(c) $\frac{1}{9}$.
(d) $\quad \begin{aligned} & 2 . \\ & 9\end{aligned}$
9. The mean of standard normal distribution is :
(a) Zero.
(b) Unity.
(c) Positive.
(d) Not finite.
10. As sample size becomes large, most of the distributions occurring in practice tend to :
(a) Exponential.
(b) Normal.
(c) Log-normal.
(d) Cauchy.
11. If X follows log-normal distribution, the value of $P(X=0.25)$
(a) 0.25 .
(b) 0.5 .
(c) Zero.
(d) One.
12. If X follows beta type $1 \beta_{1}(p, q)$, the distribution of $\mathrm{Y}=1-\mathrm{X}$ is
(a) $\beta_{1}(p, q)$.
p).
(c) $\beta_{2}(p, q)$.
(d) $\beta_{2}(q, n)$
L. Short answer type questions. Answer all nine questions :-
13. Define conditional probability function.
14. Define stochastic independence of random variables.
15. Define conditional expectation.
16. Find the characteristic function of degenerate distribution.
17. State the lack of memory property of geometric distribution.
18. Define rectangular distribution over (a, b).
19. State additive property of gamma distribution.
20. Define Pareto distribution.
21. State Chebychev's inequality.

$$
\text { x } 1 \text { = } 9 \text { weightage) }
$$

[. Short Essay or Paragraph questions. Answer any five questions.
22. If $\mathbf{P}(\mathbf{X}=\mathbf{x},=\mathbf{y})=k\left(x^{2}+y\right)$, for $\mathbf{x}=\mathbf{0}, 1,2,3$ and $\mathbf{y}=0,1$, find the value of k ?
23. Let $f(x, y)$

$$
6 x y, 0<x<1,0<y<1
$$

0 elsewhere
be the joint probability density function of (X,Y). Find \mathbf{P} ($\mathbf{X}>$
24. If joint cumulative distribution function of X and Y is

$$
F\left(x,=\begin{array}{cl}
\left\{1-e^{\prime}-C Y+e^{-4 \rho \rho Y)}\right. & , x>0, y>0 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

Examine whether \mathbf{X} and \mathbf{Y} are independent.
25. Define discrete uniform distribution over $[1, n]$. Obtain its mean and variance.
26. Obtain mode of Poisson distribution.
27.. Derive the quartile deviation of normal distribution.
28. State and establish Bernoulli's law of large numbers.
$=10$ weightage)
V. Essay questions. Answer any two questions :

$$
21 x y, \quad 0<x<y<1
$$

29. Let (\mathbf{X}, \mathbf{Y}) has probability density function $g\left(x^{\prime} y\right)$ -

0 , elsewhere
Obtain the conditional mean and conditional variance of X given $Y=y$.
30. (a) Derive the moment generating function of exponential distribution and hence obtain j mean and variance.
(b) Define beta distribution of first kind. Obtain its mean and variance.
31. (a) Explain convergence in probability.
(b) State and establish a weak law of large numbers for independent and identically distribut random variables.

