(ag :)

rame

Reg. No.....

SECOND SEMESTER B.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION DECEMBER 2012

(CCSS)

Statistics

ST 2C 02—PROBABILITY DISTRIBUTIONS

Time: Three Hours

Maximum : 30 Weightage

- I. Objective type questions. Answer all *twelve* questions :
 - **1.** If (X, Y) is a bivariate discrete random variable, then $Xx_{,} = =$
 - (a) P(X = x). (b) POC < x).

(d) None of these.

- 2. For a bivariate continuous random variable (X, Y), $\mathbf{P}(\mathbf{a}_1 < \mathbf{X} < a_2, \dots < \mathbf{Y} < \mathbf{b}_2)$
 - (a) $< P(a_1 < X \le a_2, b_1 < Y \le b_2).$ (b) $= P(a_1 < X \le a_2, (c) < P(a_1 a_2 < b_2).$ (d) $= P(a_1 a_2 < XY b_2).$
- 3. If X and Y are independent discrete random variables, then P (X x, Y y

(b)

(c) =
$$P(X = x) \cdot P(Y = y)$$
.

- In case of a bivariate random variable (X, Y) with finite product central moments μ_{rs} of order (r, s), the cov(X, Y) is :
 - (a) μ_{11} (b) **11**₂₂
 - (c) $\frac{1}{22}$ + P02 $\frac{11}{20}$ (d) P02 $\frac{11}{20}$.

Turn over

5. E[Var(X|Y)] =

	(a) Var (X).	(b) Var (X) Var [E (NY)].
	(c) Var (X) Var [E (NY)].	(d) Var (X) – $E[E(NY)]$.
6.	In case of Bernoulli distribution	
	(a) Mean = Variance.	(b) Mean < Variance.
	(c) Mean > Variance.	(d) Mean Variance.
7.	If X and Y are independent Poisson	variates each with mean 3, then $Z = X + Y$ follows
	(a) Poisson with mean 3.	(b) Poisson with mean 6.
	(c) Poisson with mean 9.	(d) None of these.
8.	If X follows geometric distribution w	ith $p = \frac{1}{3}$ then P (X 2)=
	(a) $\frac{1}{3}$. (c) $\frac{1}{9}$.	(b) 2 3
	(c) $\frac{1}{9}$.	(d) ² . 9
9.	9. The mean of standard normal distribution is :	
	(a) Zero.	(b) Unity.
10	(c) Positive.	(d) Not finite.
10.		of the distributions occurring in practice tend to :
	(a) Exponential. (c) Log-normal.	(b) Normal. (d) Cauchy.
11.		
	(a) 0.25.	(b) 0.5.
	(c) Zero.	(d) One.
12.	If X follows beta type 1 $\beta_1(p,q)$, the distribution of Y=1-X is	
	(a) $\beta_1(p,q)$.	<i>p</i>).

(c) $\beta_2(p,q)$. (d) $\beta_2(q,r)$

(12 x ¼ = 3 weightage)

- L. Short answer type questions. Answer all nine questions :-
 - 13. Define conditional probability function.
 - 14. Define stochastic independence of random variables.
 - 15. Define conditional expectation.
 - 16. Find the characteristic function of degenerate distribution.
 - 17. State the lack of memory property of geometric distribution.
 - 18. Define rectangular distribution over (a, b).
 - 19. State additive property of gamma distribution.
 - 20. Define Pareto distribution.
 - 21. State Chebychev's inequality.

x 1 = 9 weightage)

I. Short Essay or Paragraph questions. Answer any five questions.

22. If P (X = x, = y) = $k(x^2 + y)$, for x = 0,1, 2, 3 and y = 0,1, find the value of k?

23. Let
$$f(\mathbf{x}, y) = \begin{pmatrix} 6x & y, 0 < \mathbf{x} < 1, 0 < \mathbf{y} < 1 \\ 0 & \text{elsewhere} \end{pmatrix}$$

be the joint probability density function of (X, Y). Find P (X >

24. If joint cumulative distribution function of X and Y is

$$F(x) = \begin{cases} 1 - e^{t} - CY + e^{-4rY}, & x > 0, y > 0 \\ 0, & \text{elsewhere} \end{cases}$$

Examine whether X and Y are independent.

- 25. Define discrete uniform distribution over [1, n]. Obtain its mean and variance.
- 26. Obtain mode of Poisson distribution.
- 27.. Derive the quartile deviation of normal distribution.
- 28. State and establish Bernoulli's law of large numbers.

= 10 weightage)

V. Essay questions. Answer any *two* questions :

29. Let (X, Y) has probability density function $g(x, y) = \frac{21x y}{0}$, 0 < x < y < 1

Obtain the conditional mean and conditional variance of X given Y = y.

Turn over

- 30. (a) Derive the moment generating function of exponential distribution and hence obtain i mean and variance.
 - (b) Define beta distribution of first kind. Obtain its mean and variance.
- 31. (a) Explain convergence in probability.
 - (b) State and establish a weak law of large numbers for independent and identically distribut random variables.

 $(2 \times 4 = 8 \text{ weightag})$