\qquad

SECOND YEAR B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2009

Part III Mathematics (Main)

Paper II DIFFERENTIAL AND INTEGRAL CALCULUS

(2001 admission onwards)
Time : Three Hours
Maximum : 60 Marks
Maximum marks that can be earned from Unit I is 15, Unit II is 15, Unit III is 10 and Unit IV is 20.

Unit I

(Maximum 15 marks can be awarded)

1. Show that the radius of curvature at the point 0 of the curve $x=3 a \cos ^{\circ}-a \cos 30$, $y=3 a \sin e-a \sin 30$ is $\mathbf{3 a}$ sine.
2. Show that the evolute of ${\frac{x^{2}}{}}_{\mathbf{a}}^{+\frac{y^{2}}{b^{2}}=1 \text { is ax }}{ }^{2 / 3}+(b y)^{2 / 3}=(\mathbf{a} \mathbf{~ b 2})^{2 / 3}$
3. Find all the asymptotes of $(x+y)^{2}(x+2 y+2)-(x+9 y-2)=0$.
4. Locate the double point on the curve $y(y-6)=x^{-}(x-2)^{3}-9$.
5. Trace the curve $\left.a^{-} y^{2}=x^{2(a 2} x^{2}\right)$.

Unit II

Maximum 15 marks can be awarded.
6. Find the reduction formula for $\int \sin \mathbf{x} d x$.
(4 marks)

(4 marks)
8. Prove that the area of the loop of the curve $y^{2}(a+x)=x^{2}(a x)$ is $\left.2 a^{2} 1-\frac{1}{4}\right)$.
(4 marks)
9. The area bounded by the curve $x=a \cos ^{-} \theta, y=a \sin ^{-1} 0$ and lying in the first quadrant revolves about the x-axis. Find the volume of the solid generated.
(4 marks)
10. Find the curved surface generated by the revolution about the x-axis of the portion of the parabola $y^{2}=4 a x$ included between the origin and the ordinate $x=3 a$.
(4 marks)
11. Find the moment of inertia of a solid sphere about an axis passing through its centre. (5 marks)

Unit III

Maximum 10 marks can be awarded
12. Using Maclaurin's theorem expand $\log \left(1+e^{x}\right.$.
(4 marks)
13. Show that $\underset{2.3}{1}+\frac{1}{4.5}+\frac{1}{6.7}+\cdots \cdot=1-\log 2$.
(4 marks)
14. Find the sum to infinity of the series $1+{ }_{4}^{3}+\frac{3.5}{4.8} \underset{4.8 .12}{+3.5 .^{7}}+\cdots$.
(4 marks)
15. Sum the series $\frac{1^{2}}{1!}+\begin{aligned} & 1^{2}+2^{2} \\ & 1^{2}+2^{2}+3^{2} \\ & 2!\end{aligned}+\cdots$.
(5 marks

Unit IV

Maximum 20 marks can be awarded

$$
2 x y_{-}
$$

16. Show that $\left.f(x, y)=\mathrm{x}^{2}+\mathrm{y}^{2} \quad f x, y\right) \neq(0,0)$ is continuous at every point except the origin.
(5 marks)
17. If $\mathbf{u}=\frac{\mathbf{1}}{\mathrm{r}}$ and $r^{2}=\left(\begin{array}{ll}x & \mathbf{a}\end{array}\right)^{\mathbf{2}}+\left(\begin{array}{ll}\mathbf{y}-\mathbf{b})^{2}+\left(\begin{array}{ll}z & c\end{array}\right) \text {. Prove that } \frac{\partial^{2} \boldsymbol{u}}{\partial x^{2}} \quad \partial^{2} \boldsymbol{u} \\ \mathrm{y}^{2}\end{array}+\frac{\partial^{2} u}{\partial z^{2}}=\mathbf{0}\right.$.
18. Verify Euler's theorem for the homogeneous function $\boldsymbol{u}=\mathbf{x}^{\mathbf{3}}+\mathbf{y}^{\mathbf{3}}+\mathbf{z}^{\mathbf{3}}+3 x y z$.
(4 marks)
19. If $u=\log (\tan x+\tan y+\tan z)$ then show that $\sin 2 x \frac{a u}{a x}+\sin 2 \frac{a u}{a y}+\sin 2 z \frac{a u}{a z}=2$.
(4 marks)
20. Find all the maxima, minima and saddle points of the function $F(x, y)=x^{2}+3 x y+3 y^{2}-6 x+3 y-6$. (5 marks)
21. Find the volume of the prism whose base is the triangle in the $x y$-plane bounded by the x-axis and the lines $y=x$ and $x=1$ and whose top lies in the plane $f(x, y)=3-x y$.
(4 marks)
22. Evaluate ff $\int_{0}^{12-x} d z d y d x$. (4 marks)
23. Find a quadaratic approximation of $f(x, y)=e x \cos y$ by Taylors formula at the origin. (5 marks)
