SECOND YEAR B.Sc. DEGREE EXAMINATION SEPTEMBER/OCTOBER 2009

Part III Statistics (Subsidiary)
 Paper II PROBABILITY DISTRIBUTION AND STATISTICAL INFERENCE

(2000 Admissions)

Time : Three Hours

Maximum : 60 Marks

1. The first four moments of a r.v. X about $X=4$ are $1,4,10$ and 45 . Show that the mean is 5 and variance is 3 and r_{3} and μ_{4} are 0 and 26 respectively.
2. Define m.g.f. of a r.v. Mention any two limitations of m.g.f.
3. X and Y have bivariate distribution given by:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=x \cap \mathrm{Y}=y)=\frac{\mathrm{x}_{-}+3 \mathrm{y}}{24} \text { where }(\mathrm{x}, \mathrm{y})=\{(1,1),(1,2),(2,1),(2,2) . \text { Find the conditional mean } \\
& \text { of } \mathrm{X} \text { given } \mathrm{y}=2 .
\end{aligned}
$$

4. Let X have Poisson distribution with parameter >0. Prove that :

$$
1_{+1} \quad \underline{d}_{r}^{\prime}
$$

5. Obtain the m.g.f. of geometric distribution and hence obtain the mean and variance.
6. Let \mathbf{X} be a continuous r.v. having p.d.f,

$$
\begin{array}{r}
\mathrm{x} ; \quad 0 \leq x \leq 1 \\
f(x)=<2-\mathrm{x} \quad \mathbf{1}<\mathrm{x}<2 \\
0 ; \text { elsewhere }
\end{array}
$$

Find $M_{1}(t)$.
7. Let $\mathrm{X}_{l}(i=1,2, \ldots, n)$ be n independent normal variates with mean μ_{l} and variance respectively. Then show that $\sum_{i=1} a_{l} X_{i} \sim \mathbf{N} \| \sum_{i=1} a 1 \quad \sum_{i=1} a_{l}^{2} \sigma_{i}^{2} \mid$ Hence deduce that $\overline{\mathrm{X}} \mathbf{N} \quad \begin{gathered}\sigma 2 \\ \mathbf{n} \mathbf{y}\end{gathered}$
8. State Chebychev's inequality. If a r.v. X has mean 5 and variance 3 , what is the least value o P $\quad-5 \mid<3\}$?
9. State and prove Bernoulli's Law of Large Numbers.
10. State Lindberg-Levy form of CLT. Decide whether CLT holds for the sequence of independent random variables with distribution defined as :

$$
\mathrm{P}\left(\mathrm{X}_{r}=1\right)=\mathrm{P}_{\mathrm{r}} \text { and } \mathrm{P}(\mathrm{X},=0)=1-\mathrm{P}_{\mathrm{r}} .
$$

11. Define t - variate. Derive its p.d.f.
12. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}$, be independent random variables such that :

$$
\begin{aligned}
& E\left(X_{i}\right)=\mu \text { and } V_{u \prime}\left(X_{i}\right)=a^{-2} . \\
& \text { If }=+\frac{X 2}{4}+\frac{X 3}{4}+\underline{x 4} \text { and } \\
& Z=X 1+\begin{array}{c}
+2 X_{2}+X 3-X 4 \\
4
\end{array}
\end{aligned}
$$

examine whether Y and Z are unbiased for What is the efficiency of Y relative to Z.
(5 marks)
13. State factorisation theorem on sufficiency. If $\mathrm{x}_{1}, \mathrm{x}_{2}$, $x_{i 1}$ is a random sample from a distribution :

$$
\begin{aligned}
f(x, 0) & =(1-0)^{1}, \quad \mathbf{x}=0,1 \\
& =0, \text { elsewhere },
\end{aligned}
$$

show that $\mathrm{y}=\mathrm{x}_{\mathrm{i}}+\mathrm{x}_{2}+\quad+x_{\mathrm{t}}$ is a sufficient statistic for 0 .
(5 marks)
14. The sample values from population with p.d.f. : $f(x)=(1+0) \mathrm{x}^{0}, 0<\mathrm{x}<1$ are given below :

$$
0.4, \quad 0.3, \quad 0.6, \quad 0.8, \quad 0.4
$$

Find the estimator of 0 by the method of moments.
(5 marks)
15. Define "Confidence interval". Obtain the 95% confidence interval for " μ " of the Normal population $\mathrm{N} \quad \sigma$), where σ is known.
16. Define critical regions and state Neyman-pearson Lemma.
17. Discuss the large sample test for population mean (S. D. is known).
18. Explain how you will test the equality of variances of two normal populations.

