SECOND YEAR B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2009

Statistics (Subsidiary)

Paper II PROBABILITY DISTRIBUTION AND STATISTICAL INFERENCE

(2000 admission onwards)

Ti e: Three Hours ———

Maximum: 60 Marks

Each question carries 5 marks.

- 1. If $\mu_1^1 = 1$, $\mu_2 = 2$, $\mu_3 = 3$ and $\mu_4 = 4$, find μ_2 , μ_3 and μ_4 .
- 2. Define moment generating function of a r.v. X. Show that

$$\mathbf{r}_r^1 = \left. \begin{array}{cc} d & (t) \\ dt^r & \times \end{array} \right|_{t=0}^{\infty}$$

3. Let X and Y have joint p.d.f.

2, 0 < x < y < 1 10, otherwise

Show that the conditional mean and variance of X gives Y = y are $\frac{y}{2}$ and $\frac{z}{12}$ respectively.

- 4. If the recurrence relation for the central moments of Poisson distribution is $\mu_{r+1} = \frac{7}{r-1}$, dobtain hence obtain β_1 and β_2 and interpret β_1 and β_2 .
- 5. State and prove the "Lack of Memory Property" of Geometric distribution.
- 6. Define Triangular distribution and draw the graph of the p.d.f.
- 7. Find the **m.g.f.** of Gamma distribution and examine whether Gamma distribution possesses additive property.
- 8. State Chebychev's inequality. Show that for a geometric distribution P(x) = 1, 2, 3, ...

$$P\{|X-2| \le 2\} > \frac{1}{2}.$$

9. Let X_i assume values i and -i with equal probabilities. Show that the law of large numbers cannot be applied to the independent variables X_1, X_2, \ldots

u. tate Lindberg - Levy form or LPL 1. Let $A_1, 15, x, \dots$ roisson random variables with parameter

$$X_1 = 1$$
. Use CLT to estimate

$$P(10 \le S_{100} 5_{-} 50),$$

where $5_{100} = X_1 + X_2 \dots X_{100}$.

- 1. Define F-variate. Derive its p.d.f.
- 12. Define "unbiasedness". If $X_1 + \dots X_n$ is a random sample from a normal population N (pt, Show that $t = \frac{1}{n} \sum x_i^2$ is an unbiased estimator of $\mu^2 + 1$.
- 13. Let x_1 , x_2 , x_3 , x_4 be a random sample from $N(\mu, \sigma^2)$ population. Find the efficiency of $T = \frac{1}{7} [x_1 + 3x_2 + 2x_3 + x_4]$ relative to $\overline{X} = \frac{1}{4} [x_1 + x_2 + x_3 + x_4]$ which estimator is relatively more efficient? Why?
- 14. If $X_1, X_2 ... X_n$ is a random sample obtained from the density function:

$$f(x,\theta) = \begin{cases} 1, & 0 < 1 \\ 0, & \text{elsewhere} \end{cases}$$

Show that the sample mean_ is consistent for 0

- 15. What are confidence intervals? Obtain 95 % confidence interval for population proportion based on a large sample.
- 16. Define (i) Type I error; (ii) Type II error; (iii) Level of significance; (iv) Critical region.
- 17. Discuss the Chi-square test from goodness of fit.
- 18. State any *two* assumptions involved in t-test.' What are the various steps involved in testing $\mathbf{H_o}$: = t_0 , relating to normal population, $N(\mu, \mathbf{u}, \mathbf{u},$