SECOND YEAR B．Sc．DEGREE EXAMINATION，MARCH／APRIL 2009

Part III Physics＿＿Subsidiary

Paper II－ELECTRODYNAMICS，OPTICS，ELECTRONICS AND NUCLEAR PHYSICS

 （2001 admission onwards）Time ：Three Hours

Maximum ： 55 Marks

Part A

Answer and two questions． Each question carries 8 marks．

1．（a）Show that the capacity of a capacitor increases when a dielectric is introduced between the plates of a capacitor．
（4 marks）
（b）Obtain Maxwells equations of Motion．
（4 marks）
2，With necessary theory explain the production and detection of elliptically polarised light．
（8 marks）
3．Derive Braggs Law．Explain how a Braggs spectrometer can be used to determine crystal spacing． （8 marks）
4．With the help of a neat diagram，explain the working of a Colpitts oscillator．＿（8 marks）

$$
[2 \times 8=16 \text { marks }]
$$

Part B

Answer any sixteen questions． Each question carries 1\％marks．
5．Explain polarisation of a dielectric．
6．Define atomic polarisability．
7．Give Maxwells modified form of Ampere＇s law：
8．State Brewster＇s law．
9．What is double refraction ？
10．Explain why very thin films appear black in reflected light．
11．What are Haidinger fringes ？
12．Distinguish between Fresnel and Fraunhofer diffraction．
13．Define dispersive power of a grating．
14．How is the photoelectric current related to the intensity of incident radiation？
15. Mention 3 uses of photoelectric cells.
16. How is the intensity and frequency of X-rays in a Coolidge tube controlled ?
17. What are characteristic X-rays ?
18. Give the principle of electron microscope.
19. Explain the physical significance of wave function.
20. State energy time uncertainty principle.
21. What are Eigen functions ?
22. Distinguish between spontaneous and induced emission.
23. Give three uses of lasers.
24. Draw the circuit diagram of a R.C. coupled amplifier.
25. What is a Zener diode ?
26. How is the magnetic moment related to spin of the nucleus?
27. Describe Yukawas meson theory of Nuclear forces.
28. Distinguish between fission and fusion.
$(16 x=24$ marks $)$

Part C

Answer any five questions. Each question carries 3 marks.
29. Derive generalised form of Gauss Law.
30. Deduce a relation between the magnetic field and the current that produces it which flews in a closed loop.
31. The specific rotation of quartz of thickness 1 mm . is $29^{\circ} / \mathrm{mm}$. Calculate the difference in refractive indices ($\mathrm{T}=5890 \mathrm{~A}$).
32. A plane transmission grating has 6,000 lines/ cm over a length of 10 cm . Find in the wavelength of 600 mm . in the second order (a) resolving power (b) smallest wavelength that can be resolved.
33. Calculate the work function of sodium in eV . Given threshold wavelength is 6800 A $h=6.625 \times 10{ }^{\circ}$ JS.
34. Find the deBroglie wavelength associated with an electron moving with a velocity of $10^{7} \mathrm{~m} . \mathrm{s}^{-1}$. $\mathrm{m}=9.1 \times 10^{\sim} \mathrm{kg} . h=6.63 \times 10^{-3} \mathrm{JS}$.
35. Show that $=\frac{a}{1-a}$
36. The radius of $\mathrm{Ho}^{-\cdots}$ is 7.731 Jm . Deduce the radius of He .

