SECOND YEAR B.Sc. DEGREE EXAMINATION, MAY 2010
 Part III—Statistics- Subsidiary

 Paper II-PROBABILITY DISTRIBUTIONS AND STATISTICAL INFERENCE

 Paper II-PROBABILITY DISTRIBUTIONS AND STATISTICAL INFERENCE (2000 Admissions onwards)

 (2000 Admissions onwards)}
Time :Three Hours Maximum : 60 Marks

1. Define mathematical expectation of a random variable. If X and Y are two discrete random variables and a and b are constants ,show that $\mathbf{E}(a \mathrm{X}+b \mathrm{Y})=a \mathrm{E}(\mathrm{X})+b \mathbf{E}(\mathbf{Y})$.
2. If $\mu_{1}^{1}=1, \mu 4=2, \mu_{9}=2$ and $\mu_{4}^{\prime}=3$, obtain the values of $, \mu_{2}, \mu_{i}$ and μ_{4}. What is the nature of skewness of the distribution?
3. If X and Y have joint p.d.f.
$f(x, y)=\begin{aligned} & 2,0<\mathrm{x}<\mathrm{y}<1 \\ & 0, \text { otherwise },\end{aligned}$

2
show that the conditional mean and variance of X given $Y=y$ are $\frac{\check{2}}{2}$ and ${ }_{12}$ respectively.
(5 marks)
4. If X has a discrete uniform distribution over the integers $0,1,2,3$ and 4 , find $E(X) V(X)$.
(5 marks)
5. Derive the m.g.f. of geometric distribution and hence obtain the mean of the distribution.
6. If $X_{1}, X_{2}, \ldots, X_{4}$ are independent random variables, X_{i} having an exponential distribution with parameter $\theta_{1}, i=1, \quad, n$, then show that $Z=\operatorname{Min}\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots \mathrm{X}_{n}\right)$ has exponential distribution with parameter ${ }_{i=1} \theta_{i}$.
7. State and prove additive property of normal variables.
8. State Chebychev's inequality. If denotes the sample mean of a random sample of size ' n ' drawn from a population having mean 'and variance $=1$, find the minimum value of ' n ' such that $\mathbf{P}\{\mathrm{IX} .-\mu \mathrm{I}<1\}>0.95$.
9. Define the concept of "Convergence in probability". Also state and prove Bernoulli's Law of large numbers.
(5 marl
10. State and prove De-Moivre Laplace form of Central Limit Theorem.
(5 marl
11. Define a Chi-square variate with n degrees of freedom and obtain the mean and variance. Als mention any one use of Chi-square distribution.
(5 marks)
12. Define 'unbiasedness'. If $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}$, is a random sample from. a normal population $\mathrm{N}, 1$, x_{t}^{2}
show that $t-\xrightarrow{i=1}$ is an unbiased estimator of $\mu+1$.
(5 marks)
13. Let $x_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, x_{4}$ be a random sample from $\mathrm{N}\left(\mu, \sigma^{-}\right)$population. Find the efficiency of

$$
\begin{equation*}
=\frac{1}{7}\left(+{ }^{3} x_{2}+{ }^{2} x_{3}+x_{4}\right) \text { relative to } X^{1} \sum_{i=1}^{1} . \text { Which is relatively more efficient? Why? } \tag{5marks}
\end{equation*}
$$

14. Let X be a gamma variate with p.d.f.

$$
\begin{gathered}
\beta_{-}^{\alpha} \\
a
\end{gathered}
$$

Obtain the moment estimators of a and
15. Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, x_{\mathrm{u}}$ be a random sample from $\mathrm{N} \quad \sigma$)
(i) Obtain $100(1-a) \%$ confidence interval for μ when σ is known.
(ii) Obtain $100(1-a) \%$ confidence interval for u.
(5 marks)
16. Define Level of significance and 'power' of a test. Given the frequency function

$$
\begin{array}{l|l}
f(x, \theta) & \begin{array}{l}
1 \\
0
\end{array} \mathrm{O}<\mathrm{x}<\mathrm{O} \\
0, \text { elsewhere }
\end{array}
$$

Calculate the level of significance and power associated with testing $\mathrm{H}_{\mathrm{o}}: \mathrm{O}=1.5$ against $\mathrm{H}_{1}: \mathrm{O}=2.5$ by means of a single observed value x , if the critical region is chosen as $\mathrm{x}>0.8$
17. Explain the Chi-square test for independence of two attributes.
18. Explain the test procedure associated with testing $H_{u}: p=0$, where p refers to the correlation coefficient of a bivariate normal distribution.

