Reg. No.

SECOND YEAR B.Sc. DEGREE EXAMINATION, SEPTEMBER/OCTOBER 2010 Statistics (Subsidiary)
 Paper I—DESCRIPTIVE STATISTICS AND PROBABILITY
 (2000 Admission onwards)

Time : Three Hours
Maximum: 60 Marks
Each question carries 5 marks. Scientific calculators and tables are permitted.

1. Define simple random sampling. Also explain the lottery method of selecting a simple random sample.
(5 marks)
2. State any three mathematical properties of arithmetic mean. Also, find the combined mean from the following data :

$$
=70 ; \mathrm{n}_{2}=30 ; \overline{\mathrm{X}}_{1}=75 ; \mathrm{X}_{2}=65
$$

3. Define mean deviation from mean. If the observations are $1,2,3,4,5$, find the mean deviation from mean.
4. Define skewness and Kurtosis. What are the measures used for studying them?
5. Fit a parabola of the form $\mathbf{y}=\mathrm{a}+b x \quad c x$ to the following data by the method of least squares.

$$
\begin{array}{lr}
x & 1234 \\
y & 359
\end{array}
$$

6. Explain "Scatter diagram".
7. The marks secured by recruits in the selection test (X) and in the proficiency test (\mathbf{Y}) are given below. Calculate rank correlation coefficient.
```
x : 101512171216241422 20
y : 30424546 33 3440}3539393
```

8. Define :
(i) random experiment;
(ii) sample space ;
(iii) mutually exclusive events ; (iv) equally likely events.
9. State and prove the multiplication theorem of probability.
10. For any three events A, B and C prove that :

$$
\mathbf{P}[(\mathrm{A} \cup \mathrm{~B}) / \mathrm{C}]-\mathbf{P}(\mathrm{A} / \mathrm{C})+\mathbf{P}(\mathrm{B} / \mathrm{C}) \mathbf{P}[(\mathrm{A} \sim \mathrm{~B}) / \mathrm{C}] .
$$

(5 marks)
11. Three machines X, Y and Z with capacities proportional to 2: 34 are producing bullets. A bullet is taken from a day's production and found to be defective. What is the probability that it came from machine X ? The probability that the machines produce defective are $: 0.1,0.2$ and 01 respectively.
12. Define distribution function of a random variable and mention the properties of a distribution function. If $\mathrm{F}(x)=1-e^{-2 x}, x>0$, is the distribution function of a centinuous r.v. X, find the p.d.f of \mathbf{X}.
13. The probability function of a r.v. X is given below. Obtain tire distribution function of X.

$$
f\left(x \left\lvert\, \begin{array}{ll}
\frac{6}{29} x, & 1 \leq x \leq 2 \\
6 \mathrm{x} & 2<\mathrm{x}<3 \\
29 & \\
& \text { otherwise }
\end{array}\right.\right.
$$

14. Suppose that X has p.d.f. :

$$
f(x)=\begin{aligned}
& 2 \mathrm{x}, \quad \mathbf{0}<\mathrm{x}<1 \\
& 0, \quad \text { elsewhere }
\end{aligned}
$$

Find the p.d.f. of $Y=3 x+1$.
15. Let X be a r.v. having density function,

$$
f(x)=\left\{\begin{array}{lc}
\mathrm{C} x, & \mathrm{O}<x<2 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find :
(i) the value of C.

$$
\mathbf{P}_{2} \ll 3 \eta_{\text {. }} .
$$

16. The joint probability function of two discrete random variables X and Y is given by :

$$
\begin{aligned}
f(x, y) & =c(2 x+y), & & x=0, \mathbf{1}, \mathbf{2} \mathbf{y}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3} \\
& =\mathbf{0}, & & \text { otherwise }
\end{aligned}
$$

Find :
(i) the value of C.
(ii) $\mathrm{P}(\mathrm{X}=2, \mathrm{Y}$ 1).
(iii) Marginal distribution of X .
17. The joint density function of two continuous random variables X and Y is

$$
\begin{aligned}
f(x, y) & =c x y, & & 0<x<4, \mathbf{1} \mathbf{c} y<5 \\
& =\mathbf{0}, & & \text { otherwise }
\end{aligned}
$$

Find :
(i) the value of C.
(ii) the marginal p.d.f, of \mathbf{X}.
18. Let X and Y be two random variables with the joint p.d.f. :

$$
f(x, y)= \begin{cases}8 x y, & 0<x<y<1 \\ 0, & \text { otherwise }\end{cases}
$$

Find (i) conditional p.d.f. of \mathbf{X} given $\mathbf{Y}=y$ (ii) conditional p.d.f. of \mathbf{Y} gives $\mathbf{X}=x$.

