SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2014

(U.G.-CCSS)

Complementary Course

MM 2C 02—MATHEMATICS

Time : Three Hours

Maximum : 30 Weightage

Unit I

Answer all twelve questions. Each question carries $\frac{1}{4}$ weightage.

1. Tanh x is equal to :

- 2. Write csch x as a logarithmic function :
- 3. Find $\frac{d}{dx} (6 \sinh \frac{x}{3})$.

4. Find $\int_0^1 \frac{1}{\sqrt{x}} dx$.

5. The nth term of the sequence

6. Find $\lim_{n \to \infty} \sqrt[n]{3n}$.

7. Find the sum of the series
$$\sum_{n=1}^{\infty} \frac{3^{n-1}}{6^{n-1}}$$

8. Test the convergence of the series

$$1+\frac{1}{3}+\frac{1}{7}+\frac{1}{15}+\frac{1}{15}$$

Turn over

- 9. Define the absolute convergence of a series a,,.
- 10. Find the Cartesian equation of the curve $r = 6\sin \theta$.
- 11. Write the polar equation of the hyperbola with k = 2 and $e = \frac{3}{2}$.
- 12. $f(x, y) = 100 x^2 y^2$. Find the level curve of f(x, y) = 75.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Unit II

Answer any nine questions. Each question carries 1 weightage.

- 13. Differentiate tanh $+t^2$ with respect to t.
- 14. Find $\int \operatorname{sech}^{-1} x \frac{1}{2} dx$.
- 15. Find $\int_{0}^{2} \frac{dx}{1-x^{2}} dx$.
- 16. Find the sum of the series $\frac{6}{1-1} (24)$

17. Does the series $1 + \frac{1}{3} + \frac{1}{7} + \frac{1}{15} + \text{ converge }?$

- 18. Show that the series $\sum_{n=1}^{n} \frac{1}{n^2}^{n+1}$ is absolutely convergent.
- 19. For what value of x does the power series $\int_{n=1}^{00} \int_{n-1}^{n-1} x^n$ converge?

20. Find the Taylor series expansion of $f(x) = \ln (1 + x)$ at x = 0.

- 21. Find the polar equation of the elliptic $4x^2 4 5x^2 = 3x^2$
- 22. Write the centre and radius of the circle $r + \cos 0 = 0$.
- 23. Find $\lim_{x_2 \to x_2} (\ln x_2 + x_2 + x_2)$.

24. Find
$$\frac{\partial f}{\partial x}$$
 at (4, -5) if $f(x, y) = x^2 + 3xy + y$.

 $(9 \times 1 = 9 \text{ weightage})$

Unit III

Answer any five questions. Each question carries 2 weightage.

25. Show that
$$\cosh^{-1} x = In(x + Ix^2 - \overline{1}), x > 1.$$

26. Find $\overline{0^2 + 50 + 6}$

27. Show that $\frac{1+2\ln 21+3\ln 3 1+4\ln 4}{9 14 2}$ diverges.

28. Find the points of intersection of the pair of curves $r = 1 + \cos 0$ and $r = 1 - \cos 0$.

29. If $f(x, y) = x \cos y + y ex$ find $\frac{\sigma^2 f}{\partial x dy}$ and $\frac{\sigma^2 f}{\sigma y^2}$

30. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ interms of r and s where $w = x^2 + y^2$, x = r + s, y = r - s.

31. Find the directional derivative of $f(x, y) = 3xy - y^2$ at (5, 5) with directions of A = 4i + 3j.

32. Find the area that lies inside the circle r = 1 and outside $r = 1 - \cos 0$.

 $(5 \times 2 = 10 \text{ weightage})$

Unit IV

Answer any two questions. Each question carries 4 weightage.

33. (a) Evaluate $2 \quad \frac{(x + 3)}{1} \frac{x+3}{x} dx$

(b) Investigate the convergence of
$$\sum_{n=1}^{4^n} (2n)!^{-1}$$

- 34. Find the length of the cardioid $r 1 \cos 0$.
- 35. Find the linearization of $f(x, y) = x^2 xy + \frac{1}{2} + 3$ at the point (3, 2).

(2 x 4 = 8 weigh)

