# SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2014 (U.G.-CCSS) 

## Complementary Course

 MM 2C 02-MATHEMATICSTime : Three Hours
Maximum : 30 Weightage

## Unit I

Answer all twelve questions. Each question carries $\frac{1}{4}$ weightage.

1. Tanh x is equal to :
(a) $e^{x} e^{e^{-x}}$
(b) $\frac{e^{x}+e^{-x}}{2}$
(c) $\begin{aligned} & e^{x}-e^{-x} \\ & e^{x}+e^{-x}\end{aligned}$.
(d) $\begin{aligned} & e^{x}+e^{-x} \\ & e^{x} e^{-x}\end{aligned}$.
2. Write $\operatorname{csch}^{-} \boldsymbol{x}$ as a logarithmic function :
3. Find $\frac{,}{d_{x}}\left(6 \sinh \frac{x}{3}\right)$.
4. Find $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$.
5. The nth term of the sequence

$$
0,3,8,15,24 \ldots . .
$$

6. Find $\lim _{n \rightarrow \infty} \sqrt[n]{3 n}$.
7. Find the sum of the series $\sum_{\mathrm{n}=1}^{\infty} \frac{3^{n-1}}{\mathbf{6}^{\mathrm{n}-1}}$
8. Test the convergence of the series

$$
1+\frac{1}{3}+\frac{1}{7}+\frac{1}{15}+
$$

9. Define the absolute convergence of a series a,,
10. Find the Cartesian equation of the curve $r=6 \sin \theta$.
11. Write the polar equation of the hyperbola with $k=2$ and $e=3 / 2$.
12. $f(x, y)=\mathbf{1 0 0}-\mathbf{x}^{2}-\mathbf{y}^{2}$. Find the level curve of $f(x, y)=75$.

## Unit II

Answer any nine questions. Each question carries 1 weightage.
13. Differentiate tanh $\overline{+\mathrm{t}^{2}}$ with respect to $t$.
14. Find $J \operatorname{sech}^{-}\left(x-\frac{1}{2} d x\right.$.
15. Find $\int_{0}^{2} d x-\mathrm{x} 2 d x$.
16. Find the sum of the series ${ }_{n=1} \frac{6}{-1)(24}$
17. Does the series $1+\frac{1}{3}+\frac{1}{7}+\frac{1}{15}+$ converge?
18. Show that the series $\sum_{\mathrm{n}=1} \frac{1)^{n+1}}{\mathrm{n}}$ is absolutely convergent.
00
19. For what value of $x$ does the power series
$\mathrm{n}=1$

$$
{ }_{\ell}^{\mathrm{n}-1 \mathrm{x}^{n} \text { converge? }}
$$

20. Find the Taylor series expansion of $f(x)=\ln (1+x)$ at $x=0$.
21. Find the polar equation of the elliptic $4 x^{2} 4 \cdots=\cdots$
22. Write the centre and radius of the circle $r+\cos 0=0$.
23. Find $\lim \quad\left(\right.$ in $\left.x 2+y^{2}+z^{2}\right)$.
24. Find $\int_{\partial x} f$ at $(4,-5)$ if $f(x, y)=x^{2}+3 x y+y$.
$(9 \times 1=9$ weightage $)$

## Unit III

Answer any five questions.
Each question carries 2 weightage .
25. Show that $\cosh ^{-1} x=\operatorname{In}\left(x+I X^{2}-\overline{1}\right), x>1$.
26. Find $\overline{0^{2}+50+6}$
27. Show that $\frac{1+2 \ln 21+31 n 31+41 n 4}{9}$ diverges.
28. Find the points of intersection of the pair of curves $r=1+\cos 0$ and $r=1-\cos 0$.
29. If $f(x, y)=x \cos y+y e x$ find $\frac{\sigma^{-} t}{\partial x d y}$ and $\frac{o^{2} f}{\partial y^{2}}$

31. Find the directional derivative of $f(x, y)=3 x y-y^{2}$ at $(5,5)$ with directions of $A=4 i+3 j$.
32. Find the area that lies inside the circle $r=1$ and outside $r=1-\cos 0$.
( $5 \times 2=10$ weightage)

## Unit IV

Answer any two questions.
Each question carries 4 weightage.
33. (a) Evaluate 2 (x $\frac{\mathrm{x}+3}{1)\left(\frac{+1)}{(x}\right)} d x$

34. Find the length of the cardioid $\mathbf{r} \mathbf{1}-\cos 0$.
35. Find the linearization of $f(x, y)=x^{2}-x y+z+3$ at the point $(3,2)$.

